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Abstract: This paper aims to explore how preference modeling can enhance policy optimization efficiency and behavior
controllability during reinforcement learning fine-tuning of large models. To address the limitations of traditional RLHF methods
in modeling human feedback and guiding policy learning, we propose a strategy optimization framework that integrates a multi-
scale preference modeling mechanism. The proposed method first constructs a structured preference scoring function from human
feedback data to approximate reward signals. It then combines this with a policy gradient approach to guide the fine-tuning of
language models, enabling effective alignment between model behavior and human preferences. The experimental section
evaluates the performance of different preference modeling strategies on multiple natural language generation tasks. A
comparative analysis is conducted across several dimensions, including accuracy, preference alignment, convergence speed, and
training stability. Results show that the proposed method achieves better overall performance than existing approaches. It
demonstrates strong capability in modeling preferences and improving fine-tuning effectiveness.
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1. Introduction
In recent years, Large Pre-trained Models (LPMs) have

achieved remarkable progress across various domains,
including natural language processing, image recognition, and
code generation [1]. These models demonstrate unprecedented
generalization and task transfer capabilities. In particular,
Large Language Models (LLMs), such as GPT and BERT,
have shown strong expressive and reasoning abilities. This is
largely due to their exponentially increasing parameter sizes
and large-scale unsupervised pretraining. However, despite
their powerful representations, these models often fail to align
precisely with user-specific needs. In real-world scenarios,
where goals tend to be personalized, diverse, and hard to define
explicitly, LLMs may suffer from overgeneralization and
uncontrollable outputs. To address these issues, Reinforcement
Learning from Human Feedback (RLHF) has been proposed
and has become a key technique for guiding model behavior
[2].

RLHF introduces human preference information into the
training loop. This enables the model to retain general
capabilities while gradually adapting its behavior to better
match user expectations. However, traditional RLHF methods
often face several limitations in preference modeling. These
include high abstraction, low information efficiency, and sparse
feedback samples. As a result, they struggle to capture the
dynamic and subjective nature of human preferences, which
limits the effectiveness of policy optimization during fine-
tuning. More importantly, mainstream methods typically

reduce preferences to binary rankings or scalar rewards. This
oversimplification neglects the rich semantics, contextual
dependencies, and psychological factors underlying human
choices. Such simplification leads to information loss,
ultimately undermining the rationality and interpretability of
the model's behavior. Therefore, developing more expressive
and structured preference modeling mechanisms is critical to
improving the overall performance of RLHF [3].

Preference modeling serves as a bridge between human
feedback and reinforcement learning optimization strategies,
and its research value is increasingly recognized. Unlike sparse
reward signals, preference modeling learns from users'
comparative choices among outputs and constructs an implicit
reward function. This function then guides policy learning
indirectly. The approach not only improves feedback efficiency
but also mitigates the “reward alignment” issue, resulting
in a more stable and controllable training process. In large-
model scenarios, effective preference modeling can transform
limited human feedback into structured and semantically rich
training signals. This enhances sample efficiency and
convergence speed during fine-tuning, helping to strike a better
balance between practicality and robustness [4].

In the current wave of large model deployment, integrating
reinforcement learning, preference modeling, and fine-tuning
techniques is of both theoretical and practical significance. On
one hand, it helps bridge the performance gap between general-
purpose models and specific tasks, improving adaptability in
downstream applications. On the other hand, structured



preference representations enhance interpretability and user
trust. This is essential for deploying models in sensitive fields
such as healthcare, law, and finance. Moreover, RL
frameworks based on preference modeling provide a theoretical
foundation for personalized intelligent systems, paving the way
for broader human-AI collaboration in the future.

In summary, developing reinforcement learning-based fine-
tuning algorithms grounded in preference modeling addresses
key challenges in current LLM adaptation. It also offers new
insights into complex preference expression, semantic
alignment, and behavior control in human-computer interaction.
This research direction is inherently interdisciplinary, merging
machine learning, reinforcement learning, cognitive science,

and user modeling. It holds great promise for advancing the
reliability, flexibility, and human-centeredness of large-scale
AI systems.

2. Method
In order to achieve personalized guidance and strategy

optimization of large model behaviors, this study proposes a
reinforcement learning fine-tuning framework that integrates
preference modeling, aiming to use structured human
preferences as guidance signals to efficiently and stably update
the strategy of large models [5]. The reinforcement learning
fine-tuning architecture is shown in Figure 1.

Figure 1.Model network architecture

As shown in Figure 1, the algorithm architecture consists of
multiple policy modules, state-action pairs, reward functions,
and a central large language model (LLM). Each feature
performs actions independently in the network and feeds back
experience to the LLM, which uniformly models preference
information and generates reinforcement signals to guide fine-
tuning strategies.

Specifically, we first construct a preference dataset from
user feedback, model the user's preference relationship for
multiple candidate outputs as a binary comparison pair, and
estimate the relative merits between different outputs by
learning a preference scoring function. Let the given model
output be ji yy , , and the human preference data be

represented as ji yy  . The goal is to learn a scoring function

)(r so that the preferred sample pairs satisfy the following
probability relationship:
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The above preference probability expression can be
regarded as a structured modeling based on logistic regression,
and its training goal is to minimize the negative log-likelihood
loss function on all preference pairs, that is:
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The optimized scoring function can be regarded as a
pseudo-reward mechanism, which indirectly reflects the degree
of human preference for different outputs. On this basis, the
reinforcement learning policy gradient method is further
introduced to fine-tune the strategy of the large model based on
the reward function. Specifically, we define the policy model
as )|( xy , where x is the input and y is the generated
output. By maximizing the expected reward under the
preference scoring function, the strategy is guided to move
closer to human preferences:
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Considering that the preference data in actual training is
sparse and unevenly distributed, we further introduce reward
normalization and advantage function estimation mechanisms
to guide the strategy to be updated more stably. We use the
weighted advantage function byryA  )()(  , where b
represents the baseline reward value under the current strategy,
and construct the final strategy optimization target through the
following approximate expression:

)])(()|(log[)( ~ byrxyExJ y   


Finally, a closed loop of policy optimization guided by the
preference scoring function is formed, so that the policy model
can not only inherit the semantic generation ability based on
the large model, but also have dynamic adaptability to human
subjective preferences. By jointly training the preference model
and the policy model, not only the transition from implicit
feedback to explicit policy adjustment is achieved, but also the
tension between the generalization ability and user preference
alignment of the traditional RLHF[6] is effectively alleviated,
thereby improving the controllability and actual interactive
performance of the large model.

3. Experiment
3.1 Datasets

This study uses the Human Feedback Dataset (HH-RLHF)
released by OpenAI. This dataset is designed for reinforcement
learning from human feedback (RLHF) tasks and is widely
used for preference ranking and reward modeling of language
model outputs. The dataset contains a large amount of
preference comparison information of language model
generated text by human annotators, covering a variety of
natural language generation tasks such as question-answering,
summarization, and dialogue [7-9].

Specifically, each sample in the HH-RLHF dataset contains
two model outputs under the same input, as well as the
preference items selected by the annotator, which are used to
construct a "positive preference pair" training preference
scoring function. This dataset not only covers a variety of
language scenarios but also has the characteristics of high
annotation consistency and excellent sample quality, which can
effectively support the training and evaluation of the preference
modeling module.

In this study, we use this dataset to train the preference
model r as a reward proxy function for policy update in the
reinforcement learning stage. By converting high-quality
preference samples into learnable structured supervision signals,
the stability and generalization ability of the policy learning
process are significantly improved.

3.2 Experimental Results

First, this paper analyzes the impact of preference
modeling on the fine-tuning effect of reinforcement learning
strategies. The experimental results are shown in Table 1.

Table 1: Experimental results

Method Accuracy
(%)

Rewar
d

Score

Preferenc
e

Alignmen
t (%)

Conver
gence
Steps

Unbiased
modeling [10]

71.2 0.63 52.5 9800

Simple
contrast
modeling [11]

75.6 0.71 65.3 7600

Weighted
Preference
Modeling

78.9 0.76 71.8 6400

Context-
aware
preference
modeling

81.3 0.82 76.5 5800

Ours 84.7 0.88 82.1 5100

The experimental results show that introducing preference
modeling significantly improves the performance of
reinforcement learning fine-tuning. In baseline methods
without preference modeling, the model performs poorly in
terms of accuracy, reward score, and preference alignment. It
also requires more training steps to converge. This indicates
inefficiencies in policy learning and poor adaptability to human
preferences.

With the introduction and enhancement of preference
modeling strategies, model performance improves
progressively. Basic pairwise modeling, which uses binary
preference comparisons, initially improves the efficiency of
utilizing human feedback. It also enhances the consistency
between model outputs and user preferences. Further, weighted
modeling and context-aware modeling consider preference
strength and semantic context. These approaches significantly
improve the expressiveness of preferences and the precision of
reward signals. As a result, the model achieves better policy
adjustment with fewer iterations.

The proposed multi-scale preference modeling method
achieves the best results across all metrics. The accuracy
reaches 84.7%, and preference alignment increases to 82.1%. It
also converges fastest among all methods. These results
demonstrate that the method builds a tighter mapping between
structured preference information and policy optimization. It
efficiently guides the model to converge rapidly toward user
objectives, showing strong practicality and broad applicability.

Secondly, this paper gives an evaluation of the
generalization ability of the preference modeling method in
different task scenarios, and the experimental results are shown
in Figure 2.



Figure 2. Generalization Performance of Preference Modeling across Tasks

As shown in Figure 2, across four different tasks (QA,
Summarization, Dialogue, and CodeGen), all types of
preference modeling methods outperform the baseline model
without preference structure. This indicates that introducing
structured preferences has a significant positive impact on
reinforcement learning fine-tuning for large models. In all tasks,
the "Unbiased" method consistently shows the lowest
performance, revealing its weak policy generalization ability
when lacking preference guidance. With progressive
enhancement of preference modeling, the model achieves
substantial accuracy improvements across tasks. Both "Simple
Contrast" and "Weighted Pref" deliver balanced performance in
all scenarios. The "Context-aware" model further enhances the
policy's adaptability to input context, making it more robust in
tasks with complex contextual dependencies, such as dialogue
and code generation.

Notably, the proposed "Ours" method achieves the highest
accuracy across all four tasks. It demonstrates strong task
transferability and preference alignment capabilities. These
results suggest that multi-scale preference modeling provides
superior generalization across diverse task domains. It can
stably perform in various human preference-driven scenarios,
highlighting its practical deployment potential.

Finally, this paper also gives the impact of preference data
scale on the stability of strategy learning, and the experimental
results are shown in Figure 3.

Figure 3. Generalization Performance of Preference Modeling
across Tasks

As shown in the experimental results of Figure 3, the
stability of policy learning improves significantly with the
increase in preference data scale. In particular, when the data
size increases from 5k to 40k, all three methods show a
noticeable decline in instability metrics. This indicates that
fluctuations in the training process gradually decrease, and
policy updates become smoother.

Among the three methods, the "Unbiased" strategy
consistently shows higher levels of fluctuation. This suggests
that without structured preference modeling, the model
responds to human feedback in an unstable manner. In contrast,
the "Weighted Pref" method demonstrates a certain degree of
robustness with medium to large data sizes. Its training stability
improves substantially compared to the "Unbiased" method,
indicating that weighted preferences can partially reduce policy
uncertainty.

The proposed "Ours" method performs best across all data
scales. Its stability metric levels off after 20k and remains at the
lowest level. This reflects a stronger ability to suppress training
fluctuations under high-quality preference modeling. The
method supports a more efficient and reliable policy learning
process, showing strong potential for practical deployment.

4. Conclusion
This study focuses on reinforcement learning fine-tuning

optimization for large models based on preference modeling.
To address current limitations in reinforcement learning from
human feedback (RLHF), such as weak human preference
modeling, sparse reward signals, and low policy optimization
efficiency, we propose an optimization framework that
integrates multi-scale preference modeling with reinforcement
policy updates. By introducing a structured preference
scoring function, the framework significantly improves the
utilization of human feedback and enables orderly guidance
and fine-grained control over model behavior.

In the experimental section, we systematically evaluate the
performance of different preference modeling methods across
multiple task settings. Results show that the proposed method
consistently outperforms existing approaches in key metrics,
including accuracy, preference alignment, policy convergence



speed, and training stability. These findings validate the
advantages of our method in both generalization and practical
deployment. Furthermore, we conduct in-depth analysis on
how factors such as data scale and modeling structure influence
model behavior, providing both theoretical and empirical
support for future fine-tuning strategy design. This research
enhances the adaptability of large models under human
preference guidance. It also extends the technical boundaries of
reinforcement learning and language model co-optimization.

The proposed approach lays a foundation for building
controllable, safe, and efficient intelligent systems. By
constructing a more refined preference modeling mechanism, it
enables effective transfer from general pre-trained models to
task-specific agents, thereby improving interpretability and
trustworthiness in real-world interactive scenarios. Future work
may explore directions such as cross-modal preference
modeling, online preference learning, and personalized
preference adaptation. Leveraging large language models'
contextual understanding, future research could also introduce
self-feedback and meta-preference modeling mechanisms to
achieve higher-level intelligent control and dynamic tuning. In
addition, issues related to data privacy, multi-task collaborative
optimization, and alignment with human values will be
important topics for further exploration.
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