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Abstract: In modern distributed computing environments, scheduled task scheduling systems play a key role in data
synchronization, batch processing, and automated operation and maintenance. However, traditional single-machine task
scheduling methods face problems such as single point failure, task concurrency bottlenecks, and scheduling instability, making it
difficult to meet high concurrency and high availability business requirements. To address these challenges, this study designed
and implemented a highly available distributed scheduled task scheduling system. The system uses multi-machine hot standby and
lock contention triggering mechanisms to ensure reliable triggering of tasks in a distributed environment, and combines
ZooKeeper for task coordination to avoid duplicate execution problems. In addition, the system optimizes computing resource
utilization through dynamic load balancing strategies, and uses asynchronous RPC interactions to improve task scheduling
throughput. In order to verify the stability of the system, this study conducted integration tests and high availability tests.
Experimental results show that the system can still ensure the normal operation of task scheduling in the case of multi-node
failures, improving the reliability of task execution. This study provides an efficient and stable distributed task scheduling solution
for enterprise-level applications, which can be widely used in the Internet, finance, telecommunications and other industries, and
has important engineering value and theoretical significance.
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1. Introduction
In today's highly information-driven society, scheduled

task scheduling systems have become an indispensable
component of enterprise software architectures, widely applied
in scenarios such as data synchronization, batch processing,
and automated operations and maintenance. However, with the
rapid advancement of cloud computing, big data, and
microservices architecture, the traditional single-machine
scheduling model faces increasing challenges, including single
points of failure, task concurrency bottlenecks, and unstable
scheduling. Particularly in large-scale distributed environments,
enterprises must ensure that tasks operate stably under high
concurrency and heavy workloads while maintaining robust
fault tolerance. Therefore, researching the design and
implementation of a high-availability distributed scheduled task
scheduling system holds significant theoretical and practical
value[1].

Traditional scheduled task scheduling methods primarily
rely on operating system-level tools such as Crontab or
application-layer frameworks like Quartz. While these tools
perform well for small-scale task management, their limitations
become increasingly apparent when addressing the complex
demands of enterprise applications. For instance, Crontab is
dependent on a single server, meaning that if the server fails,

task scheduling will be entirely disrupted. Similarly, Quartz
offers a rich set of task management features but still
encounters challenges in distributed environments, such as
database storage bottlenecks and complex task coordination[2].
To overcome these limitations, a variety of distributed task
scheduling frameworks have emerged in recent years,
including Apache Airflow, XXL-JOB, and ElasticJob.

Although these frameworks address some of the
shortcomings of single-machine scheduling, they still suffer
from issues such as task drift, inefficient load balancing, and
complex dependency management. Thus, investigating a more
efficient and reliable distributed scheduled task scheduling
system remains a promising research direction[3].

The core objective of a high-availability distributed
scheduled task scheduling system is to ensure scheduling
stability, scalability, and fault tolerance. In a distributed
environment, several key technical challenges must be
addressed, including a highly reliable task-triggering
mechanism (to prevent task loss or redundant execution),
dynamic task load balancing (to allocate tasks efficiently based
on computing node workload), and task state management and
recovery (to enable automatic migration or re-execution in case
of node failures). Additionally, to enhance execution efficiency,
the system should support task partitioning and parallel
execution, allowing large-scale computational tasks to fully



leverage cluster resources and improve overall throughput. A
well-designed distributed scheduled task scheduling system not
only enhances the operational efficiency of enterprise
applications but also reduces maintenance costs and
strengthens business continuity.

In recent years, with the evolution of distributed computing
and cloud-native architectures, an increasing number of
scheduling systems have adopted decentralized architectures
and integrated distributed consensus protocols (e.g., Raft,
Paxos) to ensure scheduling stability. For example, Kubernetes
CronJob enables container-based task scheduling with dynamic
resource scaling capabilities, but its coarse-grained scheduling
approach makes it difficult to meet high-precision scheduling
requirements. Meanwhile, ElasticJob employs a sharding-based
scheduling mechanism to enhance distributed execution
capabilities, but its scheduling strategies still require
optimization under extreme workloads. Therefore, by
integrating the advantages of existing scheduling frameworks
and optimizing for high-concurrency and high-availability
scenarios, developing a more comprehensive distributed
scheduled task scheduling system can not only contribute new
insights to academic research but also provide efficient
solutions for enterprise applications[4].

This study aims to design and implement a high-availability
distributed scheduled task scheduling system, focusing on core
functionalities such as reliable task triggering, dynamic load
balancing, task state management, and fault recovery. By
incorporating key technologies such as distributed storage,
distributed consensus protocols, and task-sharding mechanisms,
this research seeks to construct a task scheduling architecture
that is highly available, scalable, and efficient, providing
enterprises with a stable and reliable task management solution.
The outcomes of this research can be widely applied to various
Internet business scenarios and extended to industries such as
finance, telecommunications, and intelligent manufacturing,
offering robust support for both theoretical research and
engineering practices in distributed task-scheduling.

2. Related Work on Distributed and Intelligent Task
Scheduling

Recent advances in distributed computing and intelligent
scheduling have significantly influenced the development of
high-availability task scheduling systems. Research has
increasingly turned toward integrating machine learning,
particularly reinforcement learning, into distributed scheduling
frameworks to enhance efficiency and scalability. Wang [5]
proposed a federated learning-based resource optimization
framework that emphasizes communication efficiency and
adaptive task scheduling, providing important theoretical
support for decentralized task coordination. Similarly, Deng [6]
explored traffic scheduling in data centers using reinforcement
learning, demonstrating the potential of adaptive learning
strategies in managing complex network environments.

Reinforcement learning has also been applied in specific
domains such as operating systems and IoT. Sun et al. [7]
introduced a Double DQN-based method for dynamic OS
scheduling, showcasing how task optimization can benefit from
learning-based decision mechanisms. He et al. [8] combined

Deep Q-Networks with edge-based coordination for IoT
scheduling, further validating the feasibility of intelligent
scheduling strategies in heterogeneous environments.

Trust-aware mechanisms and policy learning have been
studied by Ren et al. [9], who designed a distributed network
traffic scheduler using trust-constrained reinforcement learning,
effectively addressing reliability and trust in multi-agent
scheduling scenarios. Complementing this, Li et al. [10]
applied contrastive learning in unsupervised fraud detection,
highlighting methodological innovations that could enhance
anomaly detection and task verification in distributed
scheduling systems.

Transformers and attention mechanisms have also become
increasingly relevant in system optimization and anomaly
detection. Xu [11] employed transformer models for structural
anomaly detection in video integrity tasks, while Liang [12]
proposed a graph attention-based recommendation framework
for sparse interactions — both illustrating how attention
mechanisms can be adapted to task prioritization and
dependency resolution. Additionally, Guo et al. [13] explored
self-supervised Vision Transformers, suggesting the utility of
unsupervised representation learning in task classification and
context understanding.

Cross-domain and multimodal deep learning techniques
offer insights for managing heterogeneous task environments.
Zhu [14] developed a spatial-channel attention model for cross-
domain recommendation, which could be adapted for
distributed task routing and context-aware scheduling. In
parallel, Li et al. [15] presented a CNN-Transformer model for
multimodal classification, showcasing the feasibility of
integrating diverse data streams for scheduling decisions in
intelligent systems.

Graph neural networks and sequence models further extend
this paradigm. Zhang [16] demonstrated the use of graph neural
networks for user profiling and anomaly detection in social
systems — insights that could inform distributed task
dependency modeling. Finally, Sun and Duan [17] utilized
BiLSTM for predicting user intent in HCI scenarios, offering
methodologies that could support predictive task triggering and
adaptive scheduling.

3. Distributed system detailed design
3.1 Detailed design of task scheduling core service
subsystem

The Task Scheduling Core Service Subsystem is primarily
responsible for task scheduling and triggering management,
task state management, client connection state management,
and RPC service management. As the central subsystem of the
entire system, it plays a crucial role in coordinating the
interactions among various system components. Below is the
sequence diagram illustrating the interactions between the Task
Scheduling Core Service Subsystem and other subsystems. The
sequence diagram is shown in Figure 1.



Figure 1. Task trigger scheduling sequence diagram

3.2 Detailed design of task scheduling and control service
subsystem

In the design of the task scheduling and control service
subsystem, the task grouping management and task creation
mechanism are the key links to ensure the efficiency,
scalability and high availability of task scheduling. In order to
classify and manage permissions for large-scale tasks, the
system adopts a task grouping mechanism, and each task must
belong to a unique task group. The task group ID adopts a four-
segment structure (such as 101-1-2-6601), which represents the
cluster ID, ServerGroup ID, the number of task backups and
the task number, respectively, to uniquely identify the task and
ensure the traceability of the task. In addition, task grouping is
also closely related to user permission management and
backend server resource allocation. After the user has
management permissions for a task group, he can create,
modify and schedule tasks under the group. At the same time,
the system will automatically assign the appropriate
ServerGroup to the task to ensure the stability and scalability of
task scheduling.

In terms of task creation management, the system adopts a
dynamic task allocation and load balancing mechanism. When
creating a task, the system will intelligently allocate tasks
according to the current running status of the cluster server.
This strategy takes into account the disaster recovery capability
across computer rooms, uses the IP information of the server to
determine the computer room it belongs to, and preferentially
assigns tasks to servers in different computer rooms, thereby
enhancing the fault tolerance of the system at the computer
room level and avoiding the failure of task triggering due to
single-point computer room failure. At the same time, the
distribution of tasks adopts a random allocation strategy to
ensure that all servers only load part of the tasks, so that the
overall task scheduling load of the system is balanced, and
supports horizontal expansion to meet the execution
requirements of large-scale tasks.

In terms of system architecture, the core components of
task management include JobManager, JobAccess,
JobAccess4Mysql, ClientGroupManager, ClientGroupAccess
and ClientGroupAccess4Mysql. Among them, JobManager and

ClientGroupManager are responsible for the management of
tasks and groups, and encapsulate the metadata access logic of
task scheduling; JobAccess and ClientGroupAccess are data
layer interfaces that shield the implementation details of the
underlying database and improve the scalability of the system;
JobAccess4Mysql and ClientGroupAccess4Mysql provide
specific MySQL version implementations to ensure persistent
storage and fast retrieval of task data. These components work
together to achieve efficient control and data management of
task scheduling, and improve the overall stability and
maintainability of the system. The group management
sequence diagram and task management sequence diagram are
shown in Figure 2 and Figure 3.

Figure 2. Group management sequence diagram

Figure 3. Task management sequence diagram

In the design of the task trigger execution subsystem, the
system mainly includes task execution pool management, task
execution unit management, business processing Bean
management and RPC service management to ensure efficient
execution of tasks and decoupling of business logic. The core
goal of this subsystem is to provide an efficient and scalable
task execution environment, while ensuring the separation of
task scheduling and business logic, making the execution of
tasks more flexible and stable.

The task scheduling trigger module adopts the JobPool
mechanism to establish corresponding JobPools for different
types of tasks (Jobs) and uniformly manage the running
instances of tasks. The system maintains a mapping table (Map)
in memory to store the task instances currently running on the
client side in order to efficiently manage the execution status of
tasks. Each task instance corresponds to a task execution unit,
which integrates a task execution thread pool to process
multiple tasks in parallel and improve the throughput and
response speed of task execution. The size of the thread pool
can be customized by the user according to business needs to
adapt to task loads of different sizes.

Inside the task execution unit, the system will call the task
processing interface implemented by the user to trigger the
process call to the business processing Bean to implement the
specific business logic of the task. Through this interface
design, the system realizes the decoupling of task scheduling



logic and business processing logic, ensuring that the
scheduling module does not directly depend on specific
business logic, thereby enhancing the versatility and scalability
of the task scheduling system. At the same time, the execution
process of the task communicates across nodes through the
RPC remote call mechanism, ensuring that the task can be
flexibly scheduled to different computing nodes, thereby
improving the overall task processing capability and
availability of the system.

This chapter mainly carries out a detailed design of the
system. Starting from the system requirements, it establishes
that the system consists of three subsystems: task scheduling
core service subsystem, task scheduling service management
and control service subsystem, and task triggering execution
subsystem. At the same time, it fully considers the system's
reliability and performance requirements, and carries out
detailed design of the functional modules of each subsystem.

4. System Testing
4.1 Purpose of the test

In order to verify whether the functional integrity and high
availability of the distributed timed task scheduling system
meet the design requirements, the system test includes multiple
links such as unit testing, integration testing and high
availability testing. In the unit testing phase, each functional
module of the three subsystems is independently tested through
test piles and driver modules to ensure the correctness of the
basic functions. After the unit test passes, the system enters the
integration testing phase, and each subsystem is debugged in
the test environment to verify the stability and correctness of
their collaborative work. Finally, in order to evaluate the high
availability of the system, in the high availability testing phase,
by simulating different types of system failures, the recovery
capability and stability of task scheduling under abnormal
conditions are observed to ensure that the system can meet the
expected high availability standards.

4.2 Test environment

In terms of test environment configuration, both the
server and the client are deployed on Google Cloud virtual
machines to ensure the stability and reproducibility of the test
environment. The server runs the CentOS 7.2 64-bit operating
system and uses a Google Cloud virtual machine with a 4-core
CPU and 8GB of memory as the test environment. The client
runs on a Google Cloud virtual machine with a 2-core CPU
and 4GB of memory, and deploys applications based on
Tomcat 7 and Java. The database uses MySQL 5.7 for data
storage and management to support data persistence and high-
concurrency reading and writing of the task scheduling system.
The configuration of the overall test environment ensures that
the functional and high-availability tests of the system under
the distributed architecture can proceed smoothly and simulate
the actual production environment as much as possible.

4.3 Test Data
In terms of test data design, the system tests simple tasks

and parallel tasks respectively to verify the scheduling and
execution of different task types. In the simple task test, the

task ID is 1, the description is "simple task test", the trigger
mode is timed trigger, the time expression is "0 0/1 * * * ?"
(executed once every minute), and the task custom parameter
is TestParam. The task processing implementation logic is:
record the task ID, task description and current system time in
the log, and return a response that the task is successfully
executed. This test is used to verify whether the system can
correctly trigger and execute basic tasks, and check the
accuracy of task log records.

In the parallel task test, the task ID is 2, and the
description is "parallel task test". It also adopts the timed
trigger method and uses the same time expression "0 0/1 * *
* ?". The task custom parameter is TestParam. The execution
logic of the task adopts a two-level processing mode. The
first-level task is used to dispatch subtasks, and a total of 100
subtasks (data type is String) are generated; the second-level
task is responsible for specific business logic processing,
outputs the received subtasks in the log, and returns a
successful execution response. The entire test is divided into
two stages: integration testing and high availability testing.
First, integration testing is carried out to ensure that each
subsystem can complete the task collaboratively; finally,
special high availability testing is carried out on each
subsystem to simulate different failure scenarios to verify the
stability and fault tolerance of the task scheduling system.

4.4 Test Results

First of all, it mainly focuses on simple task trigger
execution tests, parallel computing task trigger execution tests,
console task trigger execution tests, etc. in an integrated test
environment. The test results are shown in Table 2-3.

Table 1: Integration Testing 1
Use Case
Title

Simple task triggers execution test

Prerequisites Start the server (core scheduling subsystem), start the
client (scheduling execution subsystem), start the
console (scheduling control service subsystem)

Test steps 1. Create a test task group and a test task through the
console page

2. The client implements a simple task interface and
writes the test business processing logic

3. The client configures the test task group ID and starts
4. The client receives the scheduled task schedule

according to the time expression configured in the test
task and executes the test business logic

Expected
Results

The Client receives the scheduled task schedule
according to the time expression configured in the test

task and executes the test business logic.
Test Results Meets expectations

Table 2: Integration Testing 2
Use Case Title Console task trigger test
Prerequisites Start the server (core scheduling subsystem), start the

client (scheduling execution subsystem), start the
console (scheduling control service subsystem)

Test steps 1. Create a test task group and a test task through the
console page (set the trigger type to API trigger)

2. The client implements the parallel task interface and
writes the test business processing logic

3. The client configures the test task group ID and



starts
4. Click Trigger once on the console page, the client
receives the scheduled task schedule and executes the

test business logic
Expected
Results

The console page is clicked once, the Client receives
the scheduled task schedule and executes the test

business logic
Test Results Meets expectations

Table 3: Integration Testing 3
Use Case Title Parallel computing tasks trigger execution tests
Prerequisites Start the server (core scheduling subsystem), start the

client (scheduling execution subsystem), start the
console (scheduling control service subsystem)

Test steps 1. Create a test task group and a test task through the
console page

2. The client implements the parallel task interface and
writes the test business processing logic

3. The client configures the test task group ID and
starts

4. The client receives the scheduled task schedule
according to the time expression configured in the test

task
Expected
Results

The Client receives the scheduled task schedule
according to the time expression configured in the test

task and executes the test business logic
Test Results Meets expectations

Secondly, this paper conducted a high availability test.
The experimental results are shown in Table 4-6. The goal of
high availability testing is to ensure that the system has an
overall availability of 99.99% when there is no single point of
failure in the core components (Server, Console, ZooKeeper,
Client). In the actual production operation process, the system
has not had any abnormal task scheduling caused by hardware
or software failures, which verifies the stability of its high
availability design. During the test process, the high
availability test was focused on the Server component and the
Console component. The designed test cases included
simulating the failure of some servers (1 or 2) in the cluster to
observe whether the system can still operate normally and
ensure that the task trigger scheduling service is not affected,
thereby verifying the system's fault tolerance and the
effectiveness of the high availability mechanism.

Table 4: High availability test results 1
Use Case Title High availability test of core scheduling subsystem
Prerequisites Start 3 servers (core scheduling subsystems), start the

client (scheduling execution subsystem), and start the
console (scheduling control service subsystem)

Test steps 1. Start the subsystems of the distributed timed task
scheduling system, including 3 servers

2. When the timed task starts periodic scheduling,
randomly stop 2 of the servers

3. The task can still be triggered normally on the client
Expected
Results

When a server in the server cluster crashes, the core
scheduling subsystem can still work and trigger tasks

normally.
Test Results Meets expectations

Table 5: High availability test results 2
Use Case Title API service subsystem high availability test
Prerequisites Start the server (core scheduling subsystem), start the

client (scheduling execution subsystem), start the
console (scheduling control service subsystem)

Test steps 1. Start each subsystem of the distributed timed task
scheduling system, including 3 Consoles

2. Configure nginx in the Console cluster to balance,
and randomly stop 2 of the Consoles

3. SDK requests can be processed normally
Expected
Results

When a machine in the Console cluster crashes, the
API service subsystem can still work and process SDK

requests normally.
Test Results Meets expectations

Table 6: High availability test results 3
Use Case Title High availability test of scheduling control service

subsystem
Prerequisites Start the server (core scheduling subsystem), start the

client (scheduling execution subsystem), start the
console (scheduling control service subsystem)

Test steps 1. Start each subsystem of the distributed timed task
scheduling system, including 3 consoles

2. Configure nginx in the console cluster to balance,
and randomly stop 2 of the consoles

3. Tasks can still be triggered normally on the client,
and the console page can be used normally

Expected
Results

When a machine in the Console cluster crashes, the
scheduling and control service subsystem can still work

and trigger tasks normally.
Test Results Meets expectations

5. Conclusion
This study explores the design and implementation of a

high-availability distributed scheduled task scheduling system,
addressing the challenges of traditional single-machine
scheduling methods, such as single points of failure,
concurrency bottlenecks, and unstable task execution. By
leveraging a multi-machine hot-standby mechanism, a lock-
based task trigger strategy, and ZooKeeper for task
coordination, the proposed system ensures reliable task
execution while minimizing redundant execution. Additionally,
dynamic load balancing and asynchronous RPC
communication enhance scheduling efficiency and scalability.
Experimental results validate the system's robustness,
demonstrating its ability to maintain stable task execution even
under multi-node failures, making it suitable for enterprise
applications in industries such as finance, telecommunications,
and the Internet.

Despite these advancements, further optimization remains
necessary to enhance system adaptability and intelligence.
Future research can explore machine learning-based task
scheduling strategies, enabling dynamic resource allocation
based on real-time workload patterns. Additionally,
incorporating fault prediction mechanisms could proactively
identify and mitigate system failures before they occur, further
improving system reliability. Furthermore, integrating more
fine-grained monitoring and anomaly detection capabilities will
provide real-time insights into task execution performance,
enhancing system observability and maintainability.

Looking ahead, as distributed computing continues to
evolve, the proposed scheduling system can be extended to
support edge computing and cloud-native environments. Future
iterations may integrate with container orchestration platforms



like Kubernetes to achieve more flexible and efficient
scheduling across heterogeneous infrastructures. Moreover,
leveraging blockchain technology for task verification and
execution tracking could enhance security and transparency in
large-scale distributed scheduling. By continuously refining
scheduling algorithms and system architecture, this research
lays the foundation for the next generation of intelligent,
autonomous, and highly scalable task scheduling solutions.
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