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Abstract: This study introduces a QTRAN-based portfolio optimization algorithm to advance the use of reinforcement learning
in financial investment. Traditional methods, such as the Mean-Variance Model and classical reinforcement learning algorithms
(DQN, DDPG, PPO), face challenges in capturing complex asset interactions, balancing risk and return, and managing transaction
costs. QTRAN, a value decomposition-based multi-agent reinforcement learning approach, addresses these limitations by
effectively modeling nonlinear asset relationships and optimizing long-term returns. Experimental results demonstrate that
QTRAN surpasses existing methods in key performance metrics, including the annualized return, Sharpe ratio, and maximum
drawdown, while exhibiting strong adaptability across diverse asset classes and market conditions. Further analysis of transaction
cost sensitivity and portfolio diversification highlights its robustness. This study confirms the potential of QTRAN for intelligent
investment decision-making and suggests future research directions, such as its application in high-frequency trading and
nonlinear risk management, to further expand its relevance in financial markets.
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1. Introduction
The complexity and dynamics of financial markets make

portfolio optimization a key research direction in financial
engineering and quantitative investment. Traditional portfolio
optimization methods, such as the Mean-Variance Model and
Risk Parity, mainly rely on historical data and statistical
assumptions in asset allocation. However, due to the non-
stationary and nonlinear nature of financial markets, these
methods often lack robustness and struggle to adapt to complex
market environments. With advancements in artificial
intelligence and reinforcement learning, data-driven approaches
are increasingly applied to portfolio optimization. Deep
Reinforcement Learning (DRL) offers an adaptive method for
dynamically adjusting investment strategies [1]. QTRAN, a
reinforcement learning algorithm based on value
decomposition, effectively models multi-agent cooperation
problems. It has significant advantages in handling the
nonlinear return relationships and asset interactions in portfolio
optimization. Therefore, studying a QTRAN-based portfolio
optimization algorithm can overcome the limitations of
traditional methods and provide more precise and flexible
solutions for intelligent investment.

The application of reinforcement learning in portfolio
optimization focuses on constructing agents that can adapt to
market changes and make optimal decisions. Compared to
traditional strategy optimization methods, reinforcement

learning continuously adjusts the portfolio by interacting with
the market environment, dynamically optimizing asset
allocation to maximize long-term returns. However, in practical
applications, single-agent reinforcement learning often fails to
fully capture the complexity of the market, especially when
asset interactions exist. Independently learning agents may
overlook critical information, leading to suboptimal decisions.
QTRAN, as an advanced multi-agent reinforcement learning
algorithm, explicitly decomposes value functions to align
individual agent decisions with global objectives. This enables
better coordination in asset allocation within the portfolio. By
leveraging QTRAN, investors can utilize asset interactions
under a reinforcement learning framework, enhancing portfolio
returns and stability [2].

In quantitative investment, various deep reinforcement
learning-based portfolio optimization methods have emerged,
such as Deep Q-Network (DQN), Proximal Policy
Optimization (PPO), and Deep Deterministic Policy Gradient
(DDPG). These methods have achieved some success in
optimizing investment strategies. However, they still face
challenges in real-world applications, including training
instability, low sample efficiency, and difficulty in modeling
interactions among multiple assets. Most existing
reinforcement learning methods are based on single-agent
models, which struggle to consider the dynamic characteristics
of multiple assets simultaneously. QTRAN's multi-agent value
decomposition structure better captures asset interactions in



portfolio optimization. Therefore, researching QTRAN-based
portfolio optimization algorithms can enhance the effectiveness
of reinforcement learning in finance, making it more applicable
to real market environments [3].

The core objective of this study is to explore how QTRAN's
value decomposition mechanism can optimize portfolio asset
allocation strategies. By constructing a QTRAN-based
reinforcement learning framework, we aim to develop a more
precise investment decision-making system capable of
autonomously learning optimal asset weight allocations and
maintaining adaptability under different market conditions.
Additionally, QTRAN improves training efficiency and
reduces return fluctuations caused by suboptimal strategies,
enhancing the long-term stability of the portfolio. This study
will conduct experimental analysis, comparing traditional
portfolio optimization methods, other reinforcement learning
algorithms, and QTRAN-based approaches to validate the
effectiveness and superiority of QTRAN in financial
investment optimization. The findings will provide new
technological support for quantitative investment [4].

This research aims to advance the application of
reinforcement learning in financial investment while providing
a new methodological framework for intelligent portfolio
optimization. By introducing the QTRAN algorithm, we not
only enhance the intelligence of investment decision-making
but also expand the application scope of reinforcement learning
in multi-agent decision-making. The study's findings will help
optimize asset management strategies, improve the return-risk
ratio of portfolios, and offer more efficient and stable
investment tools for quantitative investors. Furthermore, this
research lays a foundation for the broader development of
artificial intelligence in financial technology, driving
innovations in robo-advisory, automated trading, and related
fields. In the future, QTRAN-based portfolio optimization
methods can be integrated with other financial modeling
techniques, such as factor analysis and high-frequency trading,
to further enhance investment strategy reliability and market
adaptability.

2. Related work
In recent years, portfolio optimization has gained

significant attention in financial technology and artificial
intelligence. Researchers have proposed various methods to
optimize asset allocation, aiming to enhance returns and reduce
risks. Traditional portfolio optimization approaches are mainly
based on Mean-Variance Theory, Risk Parity, and Markov
Decision Process (MDP). The Mean-Variance Model is one of
the most classical methods. It balances returns and risks using
mean and variance. However, it relies on the assumption of
normally distributed asset returns and is highly sensitive to
market changes, making it difficult to adapt to complex market
dynamics. To address these limitations, the Risk Parity
approach was introduced, allocating assets based on volatility
and correlation. However, this method may fail to provide
stable returns under extreme market conditions. Additionally,
MDP-based investment optimization models have been widely

studied in recent years. These models adjust portfolios
dynamically using state transition matrices and optimal policies.
Yet, modeling financial market uncertainty remains a major
challenge in real-world applications.

With the advancement of deep learning and reinforcement
learning, researchers have started applying these methods to
portfolio optimization to enhance intelligence in asset
allocation. Deep Reinforcement Learning (DRL) has become a
key research direction due to its ability to automatically learn
optimal strategies. In recent years, methods such as DQN, PPO,
and DDPG have been used in portfolio optimization, achieving
promising results. For example, DQN optimizes investment
strategies through value iteration in discrete action spaces.
However, since asset weights in financial markets are usually
continuous variables, DQN requires discretization, which
affects optimization accuracy. In contrast, DDPG uses a
continuous action space, allowing direct prediction of asset
allocation weights. This improves strategy feasibility but
introduces instability during training. Additionally,
reinforcement learning methods incorporating attention
mechanisms and multi-agent learning are emerging in portfolio
optimization. Some approaches use Transformer structures to
extract market information, while others adopt multi-agent
architectures to model asset interactions. However, these
methods still have limitations in capturing asset relationships
and fail to fully utilize the collaborative information among
multiple assets [5].

Recently, value decomposition-based multi-agent
reinforcement learning has become a research hotspot, offering
new solutions for portfolio optimization. QTRAN, an advanced
value decomposition method, explicitly decomposes the global
value function, enabling better coordination among agents in
decision-making. This improves the overall risk-return ratio of
the portfolio. Compared to traditional single-agent
reinforcement learning, QTRAN effectively models
interactions among multiple assets, reducing losses caused by
suboptimal strategies. Recent studies suggest that value
decomposition methods have significant potential in financial
trading and automated investment. For example, in high-
frequency trading and hedge fund management, QTRAN can
optimize multi-asset trading strategies to enhance market
adaptability and profitability. However, despite its
breakthroughs in reinforcement learning, the application of
QTRAN in financial investment remains underexplored.
Investigating how to apply QTRAN to portfolio optimization
and refining the algorithm to align with financial market
characteristics is a crucial research topic [6].

3. Method
In this study, we use the QTRAN (Q-learning with

Transformations) algorithm to optimize the investment
portfolio and use its multi-agent reinforcement learning
framework based on value decomposition to improve the
intelligence level of asset allocation [7]. Its overall architecture
is shown in Figure 1.



Figure 1. QTRAN overall model architecture

Assume that the investment portfolio contains N assets. At
each time step t, the investor needs to decide the investment
weight ],...,,[ 21 N

tttt wwww  of each asset, where i
tw

represents the weight assigned to asset i, satisfying constraints

 


N

i
i
tw1 1 and 0itw . In the reinforcement learning

framework, the portfolio optimization problem can be modeled
as a Markov decision process (MDP), where the state ts
represents the market environment (such as asset prices,
volatility, etc.), the action ta is the investment weight tw ,

and the reward function tr is determined by the investment
return. Assuming that the asset's return vector is
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In traditional reinforcement learning methods, a single
agent needs to learn a value function ),( tt asQ to represent
the expected future return that can be obtained by taking
action ta in state ts . However, in the scenario of multi-asset
investment optimization, there is synergy between multiple
assets, and a single value function is difficult to effectively
model. Therefore, QTRAN adopts a value decomposition-
based method, introduces a local value function ),( i

tti asQ
to represent the value of a single asset i, and optimizes the
overall investment portfolio through a global value function

),( tttot asQ . The core idea of QTRAN is to make the global
value function satisfy the following constraints:
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Among them, ),(' i
tti asQ is the local value function of

asset i, ),( tt asg is a learnable correction term used to
ensure the consistency of the global optimal strategy and the
local optimal strategy, and  is a hyperparameter. During
the training process, we use the mean square error (MSE) loss
function to optimize the QTRAN model to minimize the value
decomposition error:
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Where ty is the target Q value, calculated by the
Bellman equation:
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Among them,  is the discount factor and *
1ta is the

optimal next investment decision. During the training process,
we use Experience Replay[8] and Target Network technology
to improve the stability of the algorithm, and adjust the
constraint ),( *

11  tt asg of the Q value to ensure the
rationality of the value decomposition. In addition, we
introduce the influence of transaction costs in the strategy
optimization process and adjust the reward function as follows:
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Among them,  is the transaction cost coefficient, which
is used to punish overly frequent transactions[9]. Through this
optimization strategy, QTRAN can learn a more stable and



profitable portfolio optimization strategy while considering
market dynamics and transaction costs.

4. Experiment
4.1 Datasets

This study uses the MSCI World Index Constituents
Dataset as the experimental data. This dataset includes stocks
from major developed markets worldwide, covering multiple
industries and regions. It provides broad market representation.
The MSCI World Index is widely used to measure global
market performance. Its historical stock prices, trading volume,
and fundamental indicators offer reliable data support for
portfolio optimization research. The dataset includes key
features such as daily closing price, opening price, highest
price, lowest price, trading volume, market capitalization, and
industry classification. These features allow researchers to
construct various investment strategies and test them under
different market conditions.

The dataset spans from 2000 to the present, covering a long
period. It effectively reflects market fluctuations across
different economic cycles. Additionally, it includes stocks
from the United States, Europe, Japan, and other regions. This
enables the study to consider cross-market influences and
validate the algorithm's adaptability on a global scale. During
data preprocessing, missing values were filled using
interpolation, and extreme values were handled to reduce noise
effects on model training. A subset of representative stocks
was selected for experiments to balance computational
efficiency and market representativeness.

To ensure the robustness of the experiments, the dataset
was divided into training, validation, and test sets. The training
set was used for reinforcement learning agent training. The
validation set was used to fine-tune QTRAN algorithm
parameters to improve generalization. The test set was used to
evaluate model performance on unseen data. Additionally, a
rolling time window approach was applied to simulate real
trading environments. This method provides a more realistic
evaluation of portfolio optimization strategies. The results
were compared with traditional methods and other
reinforcement learning algorithms in terms of return, risk, and
stability.

4.2 Experimental Results
First, this paper gives a comparative experiment between

QTRAN and other reinforcement learning algorithms. The
experimental results are shown in Table 1.

Table 1: Comparative experiment of QTRAN and other
reinforcement learning algorithms

Model Average
annualized
rate of

return (%)

Sharp
e

Ratio

Maxim
um

Drawdo
wn (%)

Transactio
n cost

ratio (%)

Traditional
mean-
variance
model

10. 0.95 18.5 0.90

PPO 11.8 1.10 16.8 1.12
DDPG 13.5 1.30 14.2 0.98
DQN 12.1 1.20 15.6 1.05
QTRAN(O
urs)

15.8 1.45 12.3 0.85

The experimental results show that the QTRAN algorithm
outperforms other reinforcement learning algorithms and the
traditional Mean-Variance Model in portfolio optimization. In
terms of average annualized return, QTRAN achieved a return
of 15.8%, significantly higher than DQN (12.1%), DDPG
(13.5%), and PPO (11.8%). It also exceeded the traditional
Mean-Variance Model's 10.0%. This result indicates that
QTRAN can utilize market information more effectively. By
optimizing asset allocation through value decomposition, it
achieves higher returns in long-term investments. Compared to
single-agent reinforcement learning methods, QTRAN's multi-
agent structure better models asset interactions. This allows it
to make more rational investment decisions in complex market
environments.

In risk control, QTRAN's maximum drawdown was 12.3%,
significantly lower than DQN (15.6%), DDPG (14.2%), PPO
(16.8%), and the Mean-Variance Model (18.5%). Maximum
drawdown is a key indicator of investment strategy stability. A
lower drawdown means smaller losses during market
downturns. QTRAN effectively adjusts asset weights in
volatile markets, preventing over-concentration or irrational
allocation of individual assets. This reduces overall portfolio
risk. In contrast, PPO and the Mean-Variance Model had
higher drawdowns, indicating higher potential losses during
market fluctuations. While DQN and DDPG controlled
drawdowns to some extent, they were still less stable than
QTRAN.

In terms of transaction costs, QTRAN's cost ratio was only
0.85%, lower than DQN (1.05%), DDPG (0.98%), PPO
(1.12%), and the Mean-Variance Model (0.90%). Transaction
cost is a crucial factor affecting actual investment returns. A
lower cost ratio indicates that QTRAN maintains stable asset
weight adjustments, avoiding frequent portfolio changes and
reducing unnecessary expenses. In contrast, PPO and DQN
had higher transaction costs, likely due to their more volatile
investment strategies, leading to frequent asset trades. Overall,
QTRAN not only excels in returns and risk control but also has
advantages in transaction costs, making it a more practical and
efficient portfolio optimization method.

Secondly, this paper gives an analysis of QTRAN's
performance on different asset categories, and the experimental
results are shown in Figure 2.



Figure 2. Analysis of QTRAN's performance in different
asset classes

The experimental results show that QTRAN performs
differently across asset categories. Overall, it achieves a high
annualized return, with the best performance in technology and
healthcare stocks. Technology stocks had the highest
annualized return, reaching approximately 18.2%, followed by
healthcare stocks at 17.1%. This result indicates that QTRAN
effectively captures market trends, optimizes investment
strategies, and provides superior returns in high-growth
industries. Consumer and financial stocks also showed strong
returns, at 15.6% and 16.3%, respectively. This suggests that
the algorithm remains effective in relatively stable markets.

In terms of Sharpe ratio, technology and healthcare stocks
had the highest values, at 1.55 and 1.50, respectively. This
indicates that QTRAN not only generates high returns in these
sectors but also maintains strong return stability, offering
investors better risk-adjusted returns. In contrast, energy stocks
had the lowest Sharpe ratio of 1.35. This is likely due to the
high volatility of the energy sector, which reduces portfolio
stability. Although energy stocks still achieved a relatively high
annualized return of 14.8%, they carried greater volatility risks.
Therefore, QTRAN's risk-return characteristics are influenced
by industry-specific factors when optimizing across different
asset categories.

For maximum drawdown, technology and healthcare stocks
had the lowest drawdowns, at 10.5% and 10.9%, respectively.
In contrast, energy and consumer stocks had higher drawdowns,
at 13.0% and 12.2%. This suggests that QTRAN applies more
stable capital management in high-growth industries,
effectively limiting losses during market downturns. Financial
stocks had a maximum drawdown of 11.8%, showing relatively
stable performance. Overall, QTRAN provides a good risk-
return balance across different asset categories. It is particularly
suitable for high-growth industries, though further optimization
is needed in high-volatility sectors like energy to reduce
drawdowns and improve stability.

Next, this paper also gives a sensitivity analysis of the
impact of transaction costs on the QTRAN optimization
strategy, and the experimental results are shown in Table 2.

Table 2: Comparative experiment of QTRAN and other
reinforcement learning algorithms

Transacti
on costs
(%)

Average
annualized
rate of

return (%)

Sharp
e

Ratio

Maxim
um

Drawdo
wn (%)

Portfolio
turnover
rate (%)

0.00 18.5 1.60 10.2 85.4
0.10 17.3 1.50 11.5 78.2
0.25 15.8 1.40 12.8 65.7
0.50 13.9 1.25 14.5 50.3
1.00 10.7 1.00 17.8 32.1

The experimental results show that increasing transaction
costs significantly impacts QTRAN's portfolio optimization
strategy, especially in terms of return and Sharpe ratio. When
transaction costs are 0%, QTRAN achieves the highest
annualized return (18.5%) and a Sharpe ratio of 1.60. This
indicates that the portfolio can maximize returns under zero-
cost conditions. However, as transaction costs rise, both
annualized return and Sharpe ratio decline. For example, when
transaction costs reach 1.00%, the annualized return drops to
10.7%, and the Sharpe ratio falls to 1.00. This suggests that
transaction costs erode investment returns, reducing the
strategy's risk-return ratio. Therefore, QTRAN must balance
high returns and low transaction costs in asset allocation to
improve practical feasibility.

In terms of maximum drawdown, increasing transaction
costs also reduce portfolio stability. When transaction costs are
0%, the maximum drawdown is 10.2%, indicating that
QTRAN effectively controls downside risks. However, as
transaction costs rise, drawdowns increase. At a 1.00%
transaction cost, the maximum drawdown rises to 17.8%,
suggesting weakened risk resistance. This may be due to higher
costs limiting strategy adjustments, preventing QTRAN from
responding promptly to market fluctuations, and increasing
portfolio drawdown risk. These findings indicate that although
QTRAN dynamically optimizes asset allocation, its risk control
ability is affected under high-cost conditions.

Changes in portfolio turnover further confirm the impact of
transaction costs on QTRAN's strategy. When transaction costs
are low (0.00%–0.10%), turnover is high (85.4%–78.2%),
indicating that QTRAN actively adjusts asset allocation to
optimize returns. However, as transaction costs increase,
turnover declines significantly. For example, at a 1.00%
transaction cost, turnover drops to 32.1%, showing that strategy
adjustments are restricted. While lower turnover reduces costs,
it may also weaken QTRAN's ability to adapt to market
changes. Therefore, in practical applications, transaction costs
and portfolio adjustments must be balanced to ensure cost
control without compromising returns and risk management
effectiveness.

Furthermore, this paper also gives the impact of portfolio
diversification on QTRAN's return performance, and the
experimental results are shown in Figure 3.



Figure 3. Impact of Portfolio Diversification on QTRAN
Performance

The experimental results show a positive correlation
between QTRAN's performance and portfolio diversification.
When the number of assets is low (e.g., 5 or 10 assets), the
annualized return is lower, at 12.5% and 14.2%, respectively.
The Sharpe ratio is also low, at only 1.10 and 1.25. This
indicates that under low diversification, portfolio stability is
weaker, and individual asset fluctuations have a greater impact
on overall performance. As a result, the risk-adjusted return is
lower. Additionally, highly concentrated portfolios may
struggle to effectively diversify risk, making them more
vulnerable to market fluctuations.

As the number of assets increases, both returns and the
Sharpe ratio steadily improve. For example, when the asset
count increases to 50, the annualized return rises to 16.5%, and
the Sharpe ratio reaches 1.50. This suggests that QTRAN can
identify better allocation strategies in a larger asset pool,
improving return stability. When the asset count further
increases to 100, the return reaches 17.0%, and the Sharpe ratio
rises to 1.55. This indicates that risk-adjusted returns continue
to improve. Diversification reduces the influence of individual
assets on the overall portfolio, enhancing strategy robustness
across different market conditions and lowering systemic risk.

Although increasing asset count improves returns and risk-
adjusted performance, the rate of improvement slows at higher
diversification levels. For instance, increasing from 50 to 100
assets raises the annualized return by only 0.5% (from 16.5% to
17.0%), while the gain is more significant when increasing
from 5 to 20 assets. This suggests a diminishing marginal effect
of diversification, where excessive asset allocation may reduce
the contribution of high-performing assets. Additionally, in
practical applications, managing a large number of assets
increases transaction costs and complexity. Therefore, portfolio
optimization must balance return enhancement and trading
efficiency.

Finally, this paper also conducted a feasibility simulation
experiment of the reinforcement learning portfolio optimization
strategy in the actual market, and the experimental results are
shown in Figure 4.

Figure 4. Feasibility Simulation of RL Portfolio
Optimization in Real Markets

The experimental results show that QTRAN performed best
in simulated real-market experiments. Its cumulative return
remained ahead throughout the entire period. In the early stage
(0–10 months), the return differences between strategies were
small. However, over time, QTRAN's return curve gradually
diverged from others. In particular, during the 15–25 month
period, QTRAN's cumulative return was significantly higher
than other reinforcement learning methods (DQN, DDPG, PPO)
and the traditional Mean-Variance Model. This indicates that
QTRAN has stronger stability and growth potential in long-
term investment optimization. It continuously adapts to market
changes and improves portfolio allocation.

In contrast, DQN, DDPG, and PPO showed faster growth in
the early stage but experienced fluctuations in the mid-to-late
period (10–20 months). Some even showed short-term declines
in returns. This may be due to their limited ability to adapt to
market volatility. In rapidly changing market conditions, their
strategy adjustments may not be timely or stable. Additionally,
the traditional Mean-Variance Model had the lowest and
slowest-growing return curve. This suggests that it struggles to
compete with reinforcement learning methods in real markets.
Its inability to dynamically adjust portfolios may be a key
limitation, while QTRAN and other reinforcement learning
models continuously optimize strategies based on market
conditions.

Overall, the results validate QTRAN's feasibility in real-
market scenarios. It not only achieves faster return growth than
other reinforcement learning methods but also demonstrates
superior long-term return stability. This suggests that QTRAN's
value decomposition reinforcement learning framework
effectively adapts to market dynamics. It optimizes portfolio
allocation while controlling risk, enhancing overall investment
returns. These findings further support the application of
reinforcement learning in financial markets and demonstrate
that QTRAN is an efficient method for intelligent investment
strategy optimization.

Furthermore, this paper also conducted an adaptability
experiment of QTRAN in a high-frequency trading
environment, and the experimental results are shown in Figure
5.



Figure 5. Experiment on algorithm adaptability in high-
frequency trading environment

The experimental results show that in a high-frequency
trading environment, there are significant differences in the
adaptability of different algorithms in trading performance.
QTRAN (blue) shows more stable volatility throughout the
trading process, but its performance drops significantly in the
phase of low liquidity. This shows that QTRAN can better
optimize the portfolio in a high-liquidity market but may face
certain trading execution difficulties when market liquidity
decreases. In contrast, DQN (red) and PPO (green) have higher
volatility, especially DQN, which has experienced dramatic
fluctuations in trading performance in some time intervals,
indicating that the algorithm may be more vulnerable to shocks
in short-term market changes.

From the overall trend, PPO has a strong adaptability, and
its trading performance has always remained at a high level
during the liquidity change cycle, indicating that the algorithm
has better stability and return capabilities in a high-frequency
trading environment. Although DQN has a strong trading
performance at some moments, its higher volatility indicates
that the algorithm may be more easily affected when the
market fluctuates violently, resulting in instability in trading
decisions. In contrast, although QTRAN performed poorly in
some low-liquidity periods, its overall trend is relatively stable,
indicating that the algorithm may be more suitable for medium-
and long-term strategy optimization rather than relying on
short-term market fluctuations to obtain returns.

In addition, the market liquidity curve (black dashed line)
shows obvious cyclical fluctuations and affects the trading
performance of different algorithms. When market liquidity is
high, all algorithms generally perform well, while in the stage
of reduced liquidity, the differences in trading adaptability of
each algorithm are amplified. QTRAN has weaker adaptability
when liquidity decreases, indicating that the algorithm may
need to further optimize the trading execution strategy to cope
with market shocks. PPO has stronger overall adaptability and
more stable performance, showing the potential advantages of
the algorithm in high-frequency trading. The experimental
results show that the adaptability of different algorithms in the
high-frequency trading market is greatly affected by market
conditions. The optimization of trading strategies needs to
consider market liquidity factors to improve the stability and
executability of overall returns.

5. Conclusion
This study proposes a QTRAN-based portfolio optimization

algorithm and validates its effectiveness in financial markets
through a series of experiments. Compared to the traditional
Mean-Variance Model and other reinforcement learning
methods (such as DQN, DDPG, and PPO), QTRAN better
captures asset interactions. It achieves higher annualized
returns and better risk-adjusted performance in long-term
investments. The experimental results show that QTRAN
outperforms existing methods across different market
conditions, asset categories, and diversified portfolios. It
provides more stable and sustainable investment returns,
especially when transaction costs are low. Additionally,
QTRAN's value decomposition mechanism allows it to
dynamically adjust strategies during optimization. This
improves portfolio stability and enhances adaptability to
market fluctuations.

In the transaction cost sensitivity analysis, we found that
higher transaction costs reduce QTRAN's returns and increase
maximum drawdown. This suggests that in practical
applications, investors need to balance return optimization and
transaction costs to ensure strategy feasibility. Moreover, the
diversification experiment shows that as the number of assets
increases, QTRAN's returns and Sharpe ratio improve, but with
diminishing marginal benefits. This indicates that QTRAN
achieves a better risk-return balance under moderate
diversification. However, excessive diversification may limit
further return improvements. Therefore, selecting an
appropriate number of assets is crucial for optimizing
investment performance.

Overall, this study demonstrates QTRAN's potential in
financial investment optimization and further supports the
application of reinforcement learning in financial markets.
Future research could explore integrating more complex market
features, such as high-frequency trading, nonlinear risk
management, and macroeconomic factors, to enhance
QTRAN's adaptability and robustness. Additionally, optimizing
the algorithm structure to improve computational efficiency
could help scale portfolio optimization to larger asset pools.
These improvements will further advance reinforcement
learning in intelligent investing and provide more sophisticated
solutions for automated investment decision-making in
financial markets.
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