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Abstract: The proliferation of intelligent agents based on large language models (LLMSs) has shifted the focus towards efficient
task planning and tool invocation for complex tasks. Traditionally, agents from scratch for each task, leading to inefficiencies in
task planning and tool usage. This study introduces a history-driven task planning method to leverage execution history and
enhance task planning efficiency. The method addresses two key issues: the repetitive exploration of task planning paths and the
regeneration of intermediate code artifacts in similar tasks. By transforming historical task planning trajectories into actionable
experience and automating the generation of reusable modules, the approach significantly reduces LLM token consumption and
increases task completion rates. The study also presents the History-based Agent Optimization Kit (HAOK), which integrates
seamlessly with existing agents to optimize prompts and enhance performance.
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1. Introduction

Building intelligent agents (agents) based on large
language models has become a trend, with the core process
involving constructing prompts to request large language
models in order to achieve task planning and tool invocation
to complete complex tasks.

Currently, research on agents mainly focuses on the
execution of single tasks, which starts from scratch each time:
first, task planning is conducted to decompose the task,
followed by invoking tools to solve each subtask. However,
there is actually transferability between similar tasks, and
existing agents are unable to mine experience from execution
history to provide references for subsequent tasks, which is
specifically manifested in two issues: (1) During the task
planning phase, similar tasks still require repeated exploration
of task planning paths and cannot leverage previous
experience to avoid erroneous exploration. (2) During the tool
invocation phase, similar tasks result in the repeated
generation of intermediate code artifacts, and cannot
accumulate and reuse them. In summary, this leads to frequent
calls to large language models and high token consumption.
This study addresses the aforementioned issues by analyzing
the execution history of agents and carries out the following
research work:

(1) To address the issue of repeated exploration of task
planning paths for similar tasks, a history-driven task planning
method is proposed. The task planning trajectory from
execution history is transformed into experience, and related
experience is retrieved through semantic similarity in

subsequent tasks to preemptively avoid ineffective exploration.

Specifically, the following steps are taken: extracting subtask
decomposition and task execution plan experience from

successful cases to guide the agent in breaking down complex
tasks and selecting tools to complete subtasks; at the same
time, extracting error-prone point reminders from failed cases.
To mitigate the impact of task description diversity on
similarity retrieval, a data augmentation scheme is designed in
this paper to automatically generate task descriptions from
multiple perspectives.

(2) To address the issue of repeatedly generating the
same intermediate code artifacts for similar tasks, a method
for intelligently generating reusable modules is proposed. The
intermediate code from execution history is transformed into
general-purpose modules, and when executing similar tasks in
the future, related modules are automatically retrieved to
directly invoke modules to solve subtasks, rather than
regenerating intermediate code. Modules are ensured to be
correct through automatic testing and can be further refactored
and merged to shorten the invocation chain of large language
models. With continued use by users, the agent will gradually
accumulate modules rich in domain and scenario knowledge.

(3) Based on the above research findings, a History-
based Agent Optimization Kit (HAOK) is constructed. HAOK
asynchronously converts execution history into experience
(including related module recommendations and related task
planning experience) in the background through the
aforementioned two methods and provides two interfaces for
the agent to upload execution history and obtain experience.
HAOK can be seamlessly integrated with existing agents
without changing the core architecture of the agent; it
automatically optimizes prompts by calling interfaces.

Finally, this study applies HAOK to practice by
developing a personal assistant agent. Experiments show that
HAOK can effectively reduce the number of ineffective



planning explorations by the agent and prevent the agent from
repeatedly generating intermediate code artifacts, thereby
reducing the consumption of large language model tokens and
improving the task completion rate.

3. Background

Large Language Models (LLMs) refer to language
models with a vast number of parameters, typically on the
scale of billions or even trillions [1]. These models are trained
on extensive textual data and fine-tuned with human feedback
to align their responses [2], ultimately achieving powerful
natural language understanding and reasoning capabilities.

In November 2022, OpenAl released ChatGPT, which is
based on GPT-3.5, marking a milestone in the development of
large language models. ChatGPT is capable of operating
according to human instructions and engaging in natural,
coherent conversations. It contains a wealth of knowledge and
possesses strong contextual understanding capabilities. Its
emergence has demonstrated that a significant increase in the
scale of parameters can lead to a leap in model capabilities,
sparking a surge of interest in large language models.

Wei et al. formally defined the emergent abilities of large
language models: "abilities that do not exist in small models
but emerge in large models"[3]. Emergent abilities typically
manifest in three ways: In-Context Learning (ICL), instruction
following, and step-by-step reasoning.

In-Context Learning was officially introduced by GPT-3,
allowing the model to produce expected outputs without
further training by providing it with a natural language prompt
or several task demonstrations. This concept was exemplified
by Brown et al. with few-shot demonstrations and later
extended to zero-shot by Kojima et al. [4]. Instruction
following refers to the fine-tuning of large language models
using multi-task datasets described in natural language (i.e.,
instruction tuning), enabling the models to understand new
task instructions without explicit examples [5].

Step-by-step reasoning is exemplified by the Chain-of-
Thought (CoT) prompting strategy [6], where large language
models can perform complex reasoning by introducing
multiple intermediate steps, particularly showing significant
improvements in solving mathematical problems. Zhang et al.
further proposed Auto-CoT, which can automatically generate
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demonstrations for the chain of thought without manual
creation by humans [7-8] .Yao et al. introduced the concept of
thought trees, extending the chain of thought to a tree
structure and combining it with search algorithms like DFS
[9]. Besta et al. further proposed thought graphs, introducing
integration, refinement, and generation actions on graph nodes.
Sel et al. proposed thought algorithms, combining human
intuitive abilities with algorithmic rationality, attempting to
mimic the human thought process when solving complex
problems by exploring ideas in layers and filtering out
infeasible options [10]. Chen et al. proposed thought
procedures, separating reasoning for computational and
numerical reasoning tasks [11]. Wang et al. introduced table
chains, effectively utilizing tabular data in reasoning chains
[12].

In-context learning, instruction following, and thought
chains endow intelligent agents based on large language
models with boundless potential.

4. Method

Task planning is essential for intelligent agents to handle
complex scenarios efficiently, particularly when powered by
large language models (LLMs). As demonstrated in the work
of Wang et al. [13], optimizing model efficiency through
techniques like knowledge distillation directly impacts how
agents manage planning-related computations. Similarly, Du
et al. [14] emphasized the importance of addressing semantic
complexity in language understanding, a core component in
enabling agents to interpret goals and constraints during task
execution. Fang et al. [15] further highlighted the significance
of contextual and semantic modeling, which supports more
accurate prediction and selection of optimal actions in a task
plan. Together, these contributions inform our understanding
of how LLM-based agents perform task decomposition,
predict potential actions, and solve complex tasks. As a result,
numerous agent task planning strategies have been developed
to enhance these capabilities.

The concept of history-driven task planning, as proposed
in this study, aligns with the memory-enhanced planning
approach mentioned in the literature. This method leverages
historical cases to improve the agent's ability to transfer
learning across tasks. It not only capitalizes on successful
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Figure 1. Optimization of Task Planning through "History-Driven Task Planning"



cases but also extracts lessons from failures, which can serve
as reminders of common pitfalls. This approach is particularly
innovative as it addresses the gap in leveraging past
experiences to guide current and future task planning,
enhancing the agent's ability to learn from history and apply
that knowledge to new, yet similar, tasks. By doing so, it
equips agents with a "battle manual" of sorts, allowing them
to navigate through tasks more efficiently by building upon
previous experiences and learned strategies.

4.1 Agent Architecture

Our history-driven task planning method allows agents to
extract actionable experience from previous executions,
grouped into three main categories: subtask decomposition,
task execution plans, and error-prone point reminders. The
first two categories are derived from successful execution
cases, helping agents reuse effective breakdowns and planning
paths. The third category captures recurring mistakes from
failed attempts, offering reminders to help avoid similar errors
in future planning.

To improve consistency across differently phrased task
descriptions, we introduce a data augmentation strategy aimed
at enhancing semantic retrieval. This helps reduce the
influence of linguistic variation on how relevant historical
examples are matched. This component is informed by prior
work on adaptive attention mechanisms and enhanced
embedding techniques [16], model efficiency optimization in
large-scale training [17], and retrieval-augmented generation
for complex reasoning using graph-based structures [18].
These contributions collectively support more robust
representation learning and improved semantic alignment
within our planning framework.

Subtask decomposition experience helps the agent
determine how to break down a task based on its complexity.
For straightforward tasks, a linear sequence of one or several
steps may be sufficient. However, more complex tasks require
deeper planning, where the agent must first divide the task
into multiple subtasks, solve them step by step, and
potentially further decompose subtasks into smaller
components. This results in a hierarchical, tree-like structure
of planning and execution. This approach is influenced by
recent advancements in multi-task learning [20], hierarchical
modeling [21], and semantic guidance strategies [22], which
highlight how complex objectives can be effectively handled
through structured decomposition and layered reasoning [23].
These insights support the design of agents that can adapt

_ | Execute history upload interface

Mission Planning
Trajectory

N
-

[
I

1

1

1

|

1 -
I:DEDEI e I
'ID*DD—D'%-'““’“ 1
[ BT o e @
1

'

1

1

1

I

1

I

their planning depth to match task difficulty, improving
overall flexibility and accuracy.

Task Execution Plan Experience: This experience guides
the agent on how to efficiently complete the current task. For
example, to solve Task A, the agent might sequentially invoke
Tool 1, Tool 2, and Tool 3.

Error-Prone Point Reminder Experience: This experience
guides the agent to minimize errors. For instance, certain tools
may require extra attention to their parameters, or specific
execution sequences may have particular prerequisites.

Figure 1 illustrates how this method optimizes the
original agent task planning. In the example, Task 1 and Task
2 are similar tasks, and the role of HAOK in the entire task
planning process is as follows.

Suggest the agent not to directly complete Subtask 1, but
to break it down into Subtasks 1.2 and 1.3. This is because
when the agent first executed the task, it found that Subtask 1
was too large to be completed directly.

Advise the agent to sequentially invoke Tools 1 and 3
when completing Subtask 2, skipping the erroneous and
ineffective attempts on Tool 2.

4.2 Implementation Method

The extraction of task planning experience from the
agent's execution history is primarily achieved through the
following three sub-strategies:

Analysis of Successful Cases: Analyze the task planning
trajectories in successful cases, which can be structured (tree-
based) or unstructured (text-based), to extract multiple subtask
decomposition experiences and task execution plan
experiences.

Error-Prone Point Reminders from Failed Cases: For
failed cases or execution flows containing failed sub-steps,
leverage large language models to analyze and identify error-
prone points, such as missing parameters, omitted necessary
steps, etc.

Data Augmentation: Use data augmentation to mitigate
the interference caused by the diversity of task descriptions on
retrieval.

Figure 2 illustrates how the three sub-strategies of
HAOK (History-Driven Task Planning) work together to
extract relevant experiences from task planning trajectories.
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Extraction of Subtask Decomposition Experience

This sub-strategy has the following requirements for the
format and content of task planning trajectories:

Supports two types of task planning trajectories:
structured (tree-based) and unstructured (text-based).

Task planning trajectories must include the following
information: task description, status (success or failure), tools
invoked, tool execution results, and parent-child task
relationships (only required for tree-based structures).

For structured (tree-based) task planning trajectories, the
experience extraction method is as follows:

Employ a purely programmatic strategy to analyze
structured task planning trajectories, extracting as much task
planning experience as possible from the tree structure to
provide suggestions for subsequent similar tasks or subtasks.

Tree node classification: Divide the nodes of the tree into
two categories:

Tool nodes: Represent tool invocations.Task nodes:

If its child nodes are several tool nodes, then all its child
nodes represent the list of tools that have been invoked in

stem from systematic issues in task planning, complex
external environments, implicit domain knowledge, missing
prerequisites, and more. Since these errors contain a wealth of
semantic knowledge, HAOK uses large language models with
natural language understanding capabilities to summarize and
induce error-prone point reminders. By employing this
anticipatory and strategic learning method, it can reduce the
number of erroneous attempts, adapt to more complex
environments, and accumulate more domain knowledge.
Figure 3 illustrates the key steps in error-prone point analysis.
Similar to the analysis of successful cases, multiple "error-
prone point reminders" can be extracted from the same
execution history. For tree-based trajectories, extract all
abnormal subtasks (for text-based, select all logs), fill them
into the "Error-Prone Point Analysis Prompt," request the
large language model, and parse the output. Finally, store
them in the experience repository in the form of "Task - Error-
Prone Point Reminder" key-value pairs.

5. Experiment
5.1 Settings

To validate the performance of the history-driven task
planning method in improving the efficiency of agent task
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Figure 3. Error-Prone Point Analysis Process

sequence to complete that task.

If its child nodes are several task nodes, then all its child
nodes represent the multiple subtasks that the task was
decomposed into when completed.

Fine-grained case reuse: To extract as much experience
as possible from execution history, this study adopts a fine-
grained, multi-level extraction approach. The entire task
planning is a complete tree, but this method does not directly
save the whole tree; instead, it traverses each subtree and
generates experience from each. By fine-grained dissection of
cases, not only can it provide path planning references for
overall similar tasks, but it can also provide references for
small, similar parts within complex tasks. This enables the
agent's task planning learning to be transferable, allowing it to
reference experiences from similar subtasks even when
encountering entirely new tasks.

HAOK can learn not only from successful cases but also
from failed cases to draw lessons from mistakes. Agents
sometimes fail for various unexpected reasons, which may

planning, the experiment utilized the ALFWorld dataset,
proposed by Mohit Shridhar et al. in 2020. The ALFWorld
dataset encompasses a variety of tasks that require the agent to
navigate and operate within a simulated home environment.
Agents first interact with the environment through text actions
in TextWorld, which are then directly mapped to specific,
vision-based environments. This design allows agents to

explore, interact, and learn in an abstract linguistic
environment before encountering complex embodied
environments.

Selection of Large Language Models: The experiment
employed OpenAl's GPT-3.5-turbo model API. The
temperature coefficient for the large language model was set
to 0. The embedding model used was OpenAl's text-
embedding-3-small. For case reference, the top 10 most
relevant task planning experiences were retrieved for each
task as references. The maximum number of calls to the large
language model for the same task was capped at 30; if the task
was not resolved after 30 calls, the attempt was terminated,
and the task was marked as failed.



5.2 Experiment

Table 1: Performance of Two Agents on ALFWorld Tasks

Acents i:li;f Average LLM Task
& o Invocations Completion Rate
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Figure 4. Comparison of LLM Call Counts (Total Task
Number 10)

When the task number is 30 and 60, there is a significant
increase in task completion rates and a sharp decrease in LLM
call counts: when the task number is 30, the completion rate
increased from 53.33% to 83.33%, and the LLM call count
decreased by about 7; when the task number is 60, the
completion rate increased from 45.0% to 75.0%, and the LLM
call count decreased by about 5. This demonstrates that
"history-driven task planning" can effectively improve task
planning efficiency. When the task number is 10, the two
agents perform almost identically: this is due to the
insufficient sample size and lack of experience accumulation.

Querying the experimental logs to analyze HAOK's
specific performance:

HAOK can accumulate more task-related knowledge; for
example, ReAct often searches for a pan in places like
drawers and refrigerators, which leads to an increase in the
number of call rounds and ultimately task failure. The steps
generated by HAOK for finding a pan are: ["'go to stoveburner
2” and "take pan 1 from stoveburner 2"]. Although
"stoveburner 2" may not exist in future tasks, this allows the
agent to first try to find the pan from the stove, reducing
incorrect attempts.

HAOK can detect some errors: for example, agents often
forget to perform the pick-up action after finding an item and
then rush directly to the next location, leading to failure.

The experiment shows that the history-driven task
planning method (1) can optimize the task planning path,
thereby reducing the number of calls to large language models,
which can improve agent efficiency and save costs. (2) can
effectively increase the task completion rate. This is due to
two reasons: on the one hand, HAOK can introduce more
task-related experience; on the other hand, because this
experiment set an upper limit on the number of calls to large
language models, when the useless steps in front are shortened,
the probability of completing the task within a limited number
of steps will also increase.

6. Conclusion

This paper offers a comprehensive overview of the
history-driven task planning method, detailing its foundational
principles, implementation techniques, and empirical
validation. This method adeptly extracts nuanced insights
from successful cases, including fine-grained subtask
decomposition and task execution strategies, while also
distilling error-prone point reminders from unsuccessful ones.
The experimental results highlight the method's key benefits:
it significantly cuts down on futile task planning explorations,
thereby solidifying successful practices and steering clear of
repeated mistakes. Moreover, it reduces the reliance on large
language model invocations and concurrently boosts task
completion rates, showcasing its efficacy in enhancing task
planning efficiency and success.
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