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Abstract: With the continuous development of deep learning technology, skin disease target detection has been
increasingly widely used in medical image analysis. This paper proposes a skin disease target detection method based on
cross-scale attention multi-layer feature fusion YOLOV8. By introducing cross-scale feature fusion and attention mechanism,
the performance of the model in processing skin disease images is enhanced. First, YOLOV8 is used as the basic framework,
and its original structure is improved. The cross-scale feature fusion module is introduced to improve the detection ability of
skin disease targets of different scales. Secondly, combined with the cross-scale attention mechanism, the key areas of skin
disease targets are focused on by dynamically weighting feature maps of different scales, which significantly improves the
robustness of the model in complex backgrounds. Experimental results show that the proposed model outperforms traditional
mainstream detection algorithms such as YOLOV5, YOLOV8, and DETR in multiple performance indicators such as
precision, recall rate, and mAP, especially when dealing with skin disease targets of different shapes and scales. Through
further ablation experiments and comparative analysis, the positive impact of cross-scale attention mechanism and multi-
layer feature fusion on detection performance is verified. This study provides a new solution for skin disease target detection,
which can effectively improve the automated diagnosis capability of skin diseases and provide strong technical support for
future medical image analysis.

Keywords: Skin disease target detection, YOLOV8, cross-scale feature fusion, attention mechanism

1. Introduction
With the rapid development of medical imaging and

deep learning technology, early diagnosis and treatment of
skin diseases have become one of the focuses of medical
research. There are many types of skin diseases, including
but not limited to eczema, psoriasis, skin cancer, etc. These
diseases not only affect the quality of life of patients but may
even threaten their lives [1,2]. Therefore, developing
efficient and automated skin disease target detection methods
is of great significance for improving diagnostic efficiency
and accuracy [3].

Traditional skin disease diagnosis usually relies on the
experience of doctors, but due to the wide variety of skin
diseases and similar symptoms, manual diagnosis is easily
affected by subjective factors, and the workload is large and
the efficiency is low. With the development of deep learning
technology, especially the successful application of
convolutional neural networks (CNN) in image recognition
tasks, automated skin disease detection methods have
gradually become a research hotspot. YOLO (You Only
Look Once), as an efficient target detection algorithm, has
achieved remarkable results in many fields, but there are still
certain challenges for complex skin disease images [4].

The image features of skin diseases have among high
heterogeneity, and large morphological differences in size
and texture the various skin diseases are great. In addition,
the presence of noise and blurring may emerge in an image,
which brings difficulty to target detection. Recently, for
enhancing the YOLO's performance in target detection of
skin diseases, it has been very effective to include cross-scale
feature fusion and mechanisms attention for improving its
performance. The cross-scale feature fusion module extracts
the feature information at different scales, thus improving the
lesion-detection performance of the model for variously
sized lesions. Attention mechanisms will help the model
focus on the key region in a complicated background, hence
improving the accuracy of detection [5].

This study proposes a skin disease target detection
method based on YOLOV8, combined with a cross-scale
attention multi-layer feature fusion strategy, to improve the
detection accuracy and robustness of the model in skin
disease images. By improving on the basis of YOLOV8, this
method can more effectively process complex features in
skin disease images and improve the recognition ability of
different types of skin diseases [6].

In short, the innovation of this study lies in combining
cross-scale attention mechanisms and multi-layer feature



fusion to cope with the diversity and complexity problems in
skin disease target detection. Through experimental
verification, the model proposed in this paper has high
accuracy and strong generalization ability in skin disease
target detection tasks, providing new ideas and methods for
future applications in the field of skin disease detection.

2. Related work
The application of deep learning techniques in medical

image analysis has seen significant progress in recent years,
particularly in the domains of disease diagnosis, target
detection, and prognosis prediction. Convolutional Neural
Networks (CNNs) have been widely adopted due to their
exceptional ability to capture spatial patterns and hierarchical
features in medical images. Wang et al. [7] proposed a deep
transfer learning approach for breast cancer image
classification, leveraging pre-trained models to accelerate
training on smaller medical datasets. Their work
demonstrated that transfer learning is particularly beneficial
when applied to medical domains with limited annotated
data, a scenario that similarly applies to skin disease datasets
where expert-annotated images are often scarce. The
effectiveness of transfer learning in medical imaging
highlights the importance of feature reuse and adaptation,
both of which are core principles in the proposed cross-scale
feature fusion mechanism applied in this paper.

In another study, Xiao et al. [8] explored the use of
CNNs for classifying cancer cytopathology images,
specifically focusing on breast cancer cases. Their findings
emphasize the importance of multi-layer feature extraction to
capture both fine-grained cellular structures and larger
tissue-level patterns. This hierarchical feature aggregation
aligns closely with the multi-layer feature fusion strategy
proposed in this paper, where features extracted at different
layers are combined to enhance detection robustness across
varying lesion scales. Similarly, Yan et al. [9] extended the
application of neural networks to survival prediction across
diverse cancer types, showcasing how deep models can
process heterogeneous patient data to infer prognostic
outcomes. Although focused on survival prediction, their
work underscores the flexibility of neural networks in
integrating multi-source data—a concept mirrored in cross-
scale fusion where spatially disparate features are
dynamically combined.

Beyond conventional CNNs, federated learning has
emerged as a critical enabler for collaborative model training
across institutions without compromising data privacy. Lu et
al. [10] introduced a large-scale medical vision-and-language
representation learning framework, enhanced by federated
learning techniques to enable multi-institutional training on
sensitive patient data. Their work highlights the importance
of distributed feature learning across diverse datasets, which
conceptually supports the need for cross-scale fusion in skin
disease detection, where image characteristics may vary
significantly across populations and imaging devices. The
ability to aggregate multi-institutional knowledge while
preserving privacy has strong relevance for future extensions

of skin disease detection systems, especially for rare or
region-specific skin conditions.

Multimodal learning approaches have also gained
traction in medical diagnosis, as demonstrated by Ruan et al.
[11], who conducted a comprehensive evaluation of
multimodal AI models combining imaging data with other
clinical information. Their analysis spans data augmentation
strategies and preference-based comparisons, providing
valuable insights into the synergistic potential of combining
image features with complementary modalities such as
patient history or laboratory results. This multimodal
perspective, while not directly employed in this study,
informs the broader context where cross-scale fusion can be
extended to incorporate not just visual features but also
auxiliary diagnostic signals, further improving robustness
and generalizability. Parallel to advancements in imaging
techniques, natural language processing (NLP)
methodologies have been applied to improve the processing
and privacy of medical textual records. Zhu et al. [12]
proposed an NLP-driven privacy solution for medical
records using transformer architectures, ensuring secure
handling and processing of sensitive patient data. Although
their focus lies in text processing rather than image analysis,
the underlying transformer architecture’s attention
mechanisms align conceptually with the cross-scale attention
employed in this study. Both approaches emphasize the
dynamic weighting of information based on context, whether
in textual sequences or spatial feature maps, to enhance
model interpretability and robustness in complex settings.

Self-training techniques have also been explored for
automated medical report generation, as presented by Wang
et al. [13], who developed a framework to generate medical
reports using semi-supervised learning. By leveraging
unlabeled data to iteratively improve the model, they
demonstrated improved report quality and reduced reliance
on costly expert annotations. While the primary domain was
medical text, the self-training principle has conceptual
relevance to image-based skin disease detection, particularly
when combining labeled and unlabeled images to enhance
cross-scale attention and feature fusion through iterative
refinement.

Graph-based methodologies have also played an
increasing role in medical data analysis, particularly for
modeling complex relationships between patients, symptoms,
and risk factors. Mei et al. [14] introduced collaborative
hypergraph networks for enhanced disease risk assessment,
capturing higher-order interactions between multiple clinical
variables. Although primarily applied to risk prediction, the
collaborative nature of hypergraph networks parallels the
fusion strategies employed in this study, where information
from multiple spatial scales is aggregated to form more
holistic feature representations. The underlying premise of
leveraging complex relationships to improve predictive
accuracy is directly applicable to multi-scale feature fusion
in image-based disease detection. In the realm of decision
support systems, Yang et al. [15] proposed a tree-based
retrieval-augmented generation (RAG) agent



recommendation system for analyzing medical test data.
Their work highlights the integration of structured medical
data with generative AI techniques to provide personalized
diagnostic recommendations. While this paper focuses
primarily on image analysis, the concept of integrating
complementary data sources, including historical diagnostic
patterns, is a promising avenue for future extensions of
cross-scale attention mechanisms, where spatial feature
weighting could be informed by patient history or
population-level diagnostic trends.

Overall, the related works collectively demonstrate the
evolving landscape of deep learning techniques applied to
medical imaging, ranging from CNN-based feature
extraction and transfer learning to multimodal fusion, graph-
based reasoning, federated learning, and transformer-driven
attention mechanisms. The proposed cross-scale attention
and multi-layer feature fusion YOLOv8 model builds upon
these advancements, combining multi-scale spatial feature
aggregation with attention-based dynamic weighting to
enhance skin disease detection across diverse lesion types,
sizes, and image contexts. This comprehensive approach
integrates lessons learned from prior studies while
addressing the unique challenges posed by skin disease
images, including high inter-class similarity, noise, and
background complexity.

3. Method
This paper proposes the skin disease target detection

method based on YOLOV8, which combines the cross-scale
attention mechanism with the multi-layer feature fusion
strategy to further improve the accuracy and robustness of
the skin disease image detection. First, improvements are
made to YOLOV8, and a cross-scale feature fusion module
is introduced to enhance the model's ability to detect skin
disease lesions of different scales [16]. We further combined
the attention mechanism to better highlight the key areas in
the skin disease image by dynamically adjusting the focus
area of the feature map, improving the detection accuracy.
The overall model architecture is illustrated in Figure 1.

The infrastructure used by YOLOV8 is a fully
convolutional neural network. The main idea is that the
target detection task transforms into a regression problem,
that is, the coordinate and category probability of each
candidate box are regressed through the neural network. In
the traditional YOLO model, the network extracts image
features through the convolution layer and maps them to a
grid of a fixed size. Each grid unit is responsible for
predicting the object category and position in the area.
Assuming that the size of the input image is hw , after
being processed by the convolutional network, the size of the

feature map obtained is
s
h

s
w
 , where S is the

downsampling factor of the network. The output of each grid
unit contains the category information, bounding box
position, and confidence of the object. The specific
prediction formula can be expressed as:

),...,,,,,,(' 21 Cppphwyxy 

Where ),( yx is the center coordinate of the bounding
box, hw, is the width and height of the bounding box,

Cppp ,...,, 21 is the probability of each category, and C is
the total number of categories.

Figure 1. Overall model architecture

In order to improve the detection effect of YOLOV8 in
skin disease images, we introduced a cross-scale feature
fusion module. The core idea of this module is to fuse feature
maps of different scales to extract different information of
skin disease targets at multiple scales. Assuming that the
input image is subjected to convolution operations of
different scales to obtain multiple feature maps

nFFF ,...,, 21 , we obtain a comprehensive feature

representation fusedF by weighted fusion of these feature
maps, and its calculation formula is:
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Among them, i represents the weight of each scale
feature map, and the weight is dynamically adjusted by the
attention mechanism during training.



In order to further improve the model's ability to
recognize skin disease images, we also introduced a cross-
scale attention mechanism. This mechanism automatically
selects the most important area for the detection task by
calculating the attention weight of the input feature map.
Assuming the input feature map is F, the attention map
obtained by an attention module is A , and then the
attention map is multiplied pixel by pixel with the input
feature map to obtain the weighted feature map attendedF :

FAFattended 

Where  represents element-wise multiplication and
A is the attention map calculated by the self-attention
mechanism. This process helps to highlight the key areas in
the skin disease images and ignore unimportant background
information, thereby improving the accuracy of object
detection [17].

Finally, the model is trained jointly by regression loss
and classification loss [18]. Regression loss is used to
optimize the prediction of bounding boxes, and classification
loss is used to optimize category prediction. Assuming the
true bounding box is ),,,( gtgtgtgt hwyx and the
bounding box predicted by the model is

),,,( pred predpredpred hwyx , then the regression loss regL
can be defined as:
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Among them, N is the number of prediction boxes, and

i is the weight of each box.

The classification loss clsL uses the cross entropy loss
function, which is defined as:
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Among them, c
gtp is the probability of the true

category, and
c
predp

is the probability of the predicted
category.

By optimizing the weighted sum of regression loss and
classification loss, the model can effectively learn the
characteristics of skin disease targets and accurately detect
the lesion area in the test image.

4. Experiment
4.1 Datasets

The ISIC2020 dataset is a high-quality medical image
dataset released by the International Skin Lesion

Classification Challenge, which is mainly used for skin
disease classification tasks. The dataset contains clinical skin
lesion images from multiple centers, and each image is
annotated by professional dermatologists to ensure the
accuracy and authority of its annotations. In relation to the
classification task, the ISIC2020 dataset provides detailed
category labels for each image for training and evaluating the
classification performance of the model. However, the
original form of the dataset does not provide annotation
information for target detection, which limits its direct
application to target detection tasks.

To solve this problem, this study further expanded and
processed the ISIC2020 dataset, manually annotated the
bounding boxes of the skin lesion areas in the images, and
generated annotation information that matches the target
detection task. These annotations add the coordinate data
required for target detection to each image, enabling it to be
applied to the training and evaluation of the detection
algorithm. Through this extension, the ISIC2020 dataset can
not only be used for classification tasks, but also provides a
rich test benchmark for skin lesion detection, thereby
providing important support for the study of more
comprehensive and diverse medical image analysis methods.
Its data example is shown in Figure 2.

Figure 2. Example of ISIC 2020 dataset

4.2 Experimental Results
In order to verify the effectiveness of the method

proposed in this paper, a variety of classic and latest target
detection models were selected for comparison in the
experiment, including YOLOv5, YOLOv8, DETR, RT-
DETR and the improved model in this paper (Ours). These
models cover different target detection frameworks and
technology development stages, including both traditional
detection methods based on convolutional neural networks
and detection algorithms based on Transformer architecture
that have been widely used in recent years. Through
comparative experiments, the advantages of the method in
this paper in detection accuracy, robustness and multi-scale
feature processing capabilities can be fully evaluated. The
experimental results are shown in Table 1.

Table 1: Experimental Results
Model Precision Recall mAP50 mAP50-95
YOLOV5 0.431 0.345 0.356 0.201
YOLOV8 0.463 0.384 0.392 0.225



DETR 0.523 0.435 0.441 0.268
RT-DETR 0.556 0.455 0.460 0.284
Ours 0.578 0.459 0.467 0.291

From the experimental results in Table 1, we can observe
that the detection performance gradually improves with the
improvement of the model. First, YOLOV5's performance in
terms of precision and recall is relatively low, especially in
the indicators of mAP50 and mAP50-95, which are 0.356
and 0.201 respectively, indicating that although YOLOV5
can detect targets in some scenarios, its accuracy and
generalization ability for skin disease targets are weak.

Secondly, YOLOV8 and DETR have significantly
improved in various indicators compared with YOLOV5.
YOLOV8 has improved precision and recall, with mAP50
and mAP50-95 reaching 0.392 and 0.225 respectively, which
is an improvement over YOLOV5. DETR performs better in
all indicators, especially in precision and recall, which reach
0.523 and 0.435 respectively, while the values   of
mAP50 and mAP50-95 also reach 0.441 and 0.268,
indicating that DETR has a strong advantage in handling
complex object detection tasks.

Last but not least, RT-DETR and our model (Ours)
achieve the best performance. RT-DETR has also enhanced
the precision, recall and mAP metrics over DETR, achieving
a precision of 0.556, recall of 0.455, and mAP50 and
mAP50-95 of 0.460 and 0.284 respectively. Our model
achieves object detection performance improvement through
the application of cross-scale attention mechanism and multi-
layer feature fusion with accuracy and recall values   of
0.578 and 0.459 respectively and mAP50 and mAP50-95
values   of 0.467 and 0.291 respectively, being much
better compared to other models' performance. In overall, the
suggested model in the scenario of this paper functions
optimally for the specific task of skin disease detection.
Moreover, it has the ability to enhance the detection accuracy
along with the generalization capacity of the system
considerably.

In order to more intuitively demonstrate the performance
and detection effect of the improved model in this paper, a
visualization experiment was conducted. By visualizing the
prediction results of the model on the test set at the image
level, the model's ability to locate target boundaries, identify
key areas, and handle complex backgrounds can be analyzed.
At the same time, comparing the prediction results with the
real annotations can not only verify the accuracy of the
model in the target detection task, but also reveal its
performance in dealing with different target forms and scales,
thereby providing valuable reference for further optimization
of the model. First, the intuitive detection results are given,
and the experimental results are shown in Figure 3.

Figure 3 shows the intuitive detection results of the ISIC
dataset. Each skin disease image in the figure has a red
border, which frames the detected lesion area. These lesions
have different shapes and scales, showing the performance of
the model when dealing with various targets. The numbers in
each red box represent the category and confidence of the

target, indicating that the model successfully identified the
skin disease target. These detection results provide valuable
reference for further optimization of the model.

Figure 3. Intuitive detection results of ISIC dataset

5. Conclusion
This paper introduces a novel approach to skin disease

detection and, more particularly, target detection. Built upon
the state-of-the-art cross-scale attention methods and also on
the multi-layer feature fusion capability of YOLOV8, this
approach focuses on addressing the inherent complexity and
heterogeneity of skin disease images first to render both the
detection precision greater as well as overall model stability.
The cross-scale feature fusion with an attention mechanism
was applied effectively for these improved results. The test
results obtained by the research clearly reflect that the model
suggested in this paper has some level of superiority over
current mainstream target detection algorithms. It is clear
that the superiority is present in many performance measures,
but it is most profound when taking the precision and recall
rate measures into account. This model has also proven to
have a remarkable capability to detect skin disease targets
more efficiently, regardless of their diverse types and sizes.

Through a series of well-designed comparative
experiments, the effectiveness and improvement of the cross-
scale attention mechanism and the multi-layer feature fusion
on the overall performance of the model are verified
comprehensively. The model is not only shown to
significantly enhance the accuracy of skin disease detection
but also to handle and resist the interference caused by noise
and complex backgrounds in the images. Particularly in the
scenario of small target detection and being able to capture
fine-grained information in images of skin diseases, the
method in this paper is found to be of great advantages. This
is to clearly illustrate the potential of the model for use in
various real-world applications.

In summary, the YOLOV8 model-based target detection
method for skin diseases described in this article provides a
novel solution for the automatic diagnosis of various skin
diseases. In the future, research efforts can continue to
explore and experiment with the feature extraction methods



applicable to various types of skin lesions. Additionally,
there is considerable potential to incorporate more varied
medical image data, which will further enhance the
generalizability of the model and diagnostic accuracy. This,
in turn, will provide an increasingly stable and reliable
technical foundation to support the early diagnosis and
successful treatment of skin diseases.
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