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Abstract: This study explored the application of convolutional neural network (CNN) based medical image classification
and compared the performance of five common deep learning models, including CNN, VGG16, ResNet-50, Inception-v3 and
MobileNet. Through experiments on public medical image datasets, the classification accuracy, recall and F1 score of each
model were evaluated. The experimental results show that VGG16 performs best in all evaluation indicators, with an accuracy
0f 90.2%, a recall of 88.5% and an F1 score of 89.3%. Although ResNet-50 also has high performance, it is slightly inferior to
VGG16 in accuracy and recall. Inception-v3 and MobileNet perform relatively poorly in processing medical images, with
lower accuracy and recall than the former two. CNN, as a baseline model, performs the worst in various indicators, showing its
limitations in medical image analysis. Through comparative experiments, this study provides a theoretical basis for selecting
appropriate deep learning models for medical image classification and provides guidance for the future application of deep

learning in medical image diagnosis.

Keywords: Medical image classification, convolutional neural network, VGG16, ResNet-50, deep learning

1. Introduction

With the rapid development of artificial intelligence
technology, the application of deep learning in medical
image analysis has made significant progress. As an
important basis for clinical diagnosis and treatment, medical
imaging plays a vital role in the early detection and accurate
judgment of diseases. However, due to the high complexity
and high dimensionality of medical images, traditional
manual analysis methods are often limited by time and
accuracy and are difficult to meet the needs of modern
medical diagnosis. Therefore, how to use advanced
computing technology to improve the efficiency and
accuracy of medical image analysis has become an urgent
problem in the medical field. As a powerful deep learning
tool, convolutional neural network (CNN) has been widely
used in image classification, target detection and other fields,
especially in medical image analysis, showing its strong
potential[1].

Convolutional neural networks can automatically
extract feature information from images through structures
such as multi-layer convolution, pooling and fully connected
layers, greatly reducing the complexity of traditional manual
feature extraction. In medical image classification tasks,
CNN can automatically learn important diagnostic features
from original images, avoiding the tedious process of
manually designing features. Therefore, the application of
CNN in medical image analysis has received more and more
attention, especially in tasks such as disease classification,
tumor detection, and organ segmentation, where it has
demonstrated its superior performance[2]. As a classic
convolutional neural network model, VGG16 has become
one of the important tools in the field of medical image

classification with its deep network structure and excellent
image feature extraction capabilities[3].

The structural characteristics of the VGG16 model
enable it to have strong expressive capabilities in medical
image classification tasks[4]. The model consists of 16
layers, including 13 convolutional layers and 3 fully
connected layers, with deeper network depth and higher
nonlinear fitting capabilities. The core advantage of VGG16
lies in its simple and efficient structural design. It uses a
small-sized 3 X3 convolution kernel for feature extraction,
which makes the model have strong feature learning
capabilities. Compared with other deep network models,
VGG16 has better performance in images. Performance in
classification tasks is very stable. Through reasonable
network design, VGG16 can extract rich local and global
features in medical images, providing strong support for
subsequent classification tasks[5].

Medical imaging data often suffers from high
dimensions and difficulty in labeling. The powerful feature
extraction capabilities of VGG16 can effectively alleviate
this  problem[6]. Through training, VGGI16 can
automatically learn key diagnostic information from a large
amount of medical image data, greatly improving the
accuracy of image classification. In specific applications,
VGG16 can be used to classify various medical images,
including CT, MRI, X-ray and other image types. Compared
with traditional methods, VGG16 can not only achieve
better results in classification accuracy, but also significantly
reduce the workload of manual annotation and improve the
work efficiency of clinicians.

In the application process of medical image
classification, the quality and quantity of the data set have a



crucial impact on the training effect of the model. In order to
solve the problems of difficulty in labeling medical imaging
data and insufficient data, data enhancement technology and
transfer learning methods have been widely used in recent
years. Data enhancement can effectively expand the size of
the data set and improve the generalization ability of the
model by performing operations such as rotation, translation,
scaling, and flipping on the original image. Transfer learning
pre-trains VGG16 on large-scale image data sets and then
applies it to medical image classification tasks, thereby
greatly reducing training time and dependence on the
amount of data. With the support of these technologies, the
VGG16 model can more accurately adapt to medical image
classification tasks, improving the model's performance in
practical applications[7].

Although VGG16 has shown strong capabilities in
medical image classification, there are still some challenges
and room for improvement in practical applications. First,
the computational complexity of the VGG16 model is high,
especially when processing large-scale medical images, and
the training and inference processes may take a long time.
Secondly, due to the diversity and complexity of medical
imaging data, VGG16 may not be able to fully capture all
diagnostic information, causing the model's robustness and
accuracy to be affected to a certain extent. Therefore, in
response to these problems, researchers are exploring ways
to further improve the performance of VGG16 in medical
image classification by optimizing the network structure,
introducing  attention mechanisms, and combining
multi-scale information.

In general, medical image diagnosis models based on
convolutional neural networks, especially the use of VGG16
for medical image classification, have become an important
tool for modern medical image analysis. Through effective
feature extraction and model optimization, VGG16 can
provide efficient and accurate solutions in medical image
classification tasks, providing strong support for early
diagnosis and precise treatment of diseases. With the
continuous advancement of deep learning technology and
the continuous accumulation of medical imaging data,
medical imaging diagnosis based on convolutional neural
networks will play an increasingly important role in the
future.

2. Related Work

In recent years, deep learning, particularly convolutional
neural networks (CNNs), has played a crucial role in
advancing medical image analysis. CNNs leverage
multi-layer convolutional operations to automatically extract
hierarchical features from images, which is particularly
advantageous for processing complex medical data such as
CT, MRI, and pathology images. Compared to traditional
manual feature engineering, CNNs not only reduce the need
for handcrafted features but also improve classification
accuracy and generalization performance [8], [9]. Among
CNN architectures, VGG16 has become one of the most
widely applied models due to its deep yet simple structure,
where small convolutional kernels (3x3) are stacked to
enhance feature extraction capabilities. This design allows
VGG16 to capture both local and global patterns, making it
particularly effective for medical image classification tasks
[10]. Beyond VGG16, ResNet-50 addresses the gradient

vanishing problem that arises in deeper networks through its
innovative residual learning mechanism, which preserves
information flow across layers, making it suitable for
complex medical image processing scenarios [11].
Inception-v3, with its inception modules designed to capture
multi-scale spatial features simultaneously, provides
flexibility in feature extraction, although its performance on
highly specialized medical images often falls short of
VGG16 and ResNet-50 [12]. MobileNet, designed for
lightweight computation, offers advantages in mobile and
embedded medical devices; however, its reduced capacity
for feature representation can lead to lower classification
accuracy in high-dimensional medical imaging tasks [13].

Apart from traditional CNN-based approaches,
transformer models and attention mechanisms have emerged
as complementary techniques for medical image analysis.
Transformers, originally developed for natural language
processing, have been successfully adapted for medical
image classification, leveraging self-attention to capture
long-range dependencies and complex spatial relationships
within images [14]. Recent work incorporating multi-scale
transformer architectures into medical image classification
demonstrates the potential of these models to enhance
performance by effectively integrating features across
different resolution levels [15]. Furthermore, hybrid
approaches that fuse CNNs with attention modules or
transformers have shown promise in addressing data
imbalance and fine-grained feature extraction challenges
commonly encountered in medical imaging [16]. In addition
to classification, deep learning models have been
successfully applied to object detection tasks in medical
images, such as lesion localization and organ segmentation.
For instance, models like RT-DETR demonstrate the
flexibility of combining region proposal mechanisms with
transformer backbones, enhancing both detection accuracy
and interpretability [17]. Adversarial robustness has also
become a critical research topic, as adversarial attacks can
severely undermine the reliability of medical image
classifiers, exposing the need for robust training and
adversarial defense techniques tailored to clinical
applications [18].

To address the limited availability of labeled medical data,
data augmentation and transfer learning are widely used
strategies. Pre-trained CNNs such as VGG16 and ResNet-50
are commonly fine-tuned on medical image datasets,
leveraging knowledge from large-scale natural image
datasets to improve generalization on smaller medical image
collections [19]. Beyond traditional transfer learning,
techniques such as collaborative hypergraph networks have
been explored for enhanced disease risk prediction and visit
prediction in healthcare applications, demonstrating the
potential of graph-enhanced deep learning for modeling
complex patient interactions and medical histories [20], [21].
Knowledge distillation has also been employed to compress
large models into smaller yet effective ones, addressing the
need for efficient deep learning solutions in
resource-constrained clinical environments [22]. Contrastive
learning, particularly in cold-start scenarios where labeled
data is scarce, has been applied to enhance feature
representations in medical image classification [23].

Beyond medical image classification, deep learning has
shown broad applicability across various medical and
healthcare-related tasks, including survival prediction for



cancer patients using deep neural networks, where
multi-modal data integration plays a critical role [24].
Furthermore, convolutional networks have been extensively
applied to cytopathology image classification, further
demonstrating the flexibility and effectiveness of
CNN-based approaches for domain-specific medical
imaging tasks [25]. Outside the core medical imaging
domain, concepts such as reinforcement learning for
adaptive data mining and matrix logic approaches for
efficient itemset discovery contribute to the broader
methodological advancements that indirectly benefit
healthcare analytics and medical data mining [26], [27].
Similarly, techniques such as federated learning are
becoming increasingly important for scaling up medical
vision-and-language models while preserving data privacy,
particularly when integrating multi-institutional medical data
[28]. Lastly, approaches such as spatiotemporal forecasting
using hybrid deep learning techniques like LSTM combined
with association rules show promise for broader healthcare
system monitoring and prediction, which could complement
image-based diagnostic models by providing contextual
insights into patient status over time [29]. In summary,
CNNs, transformers, and hybrid deep learning architectures
form the backbone of modern medical image analysis, and
continued advances in feature representation learning, model
robustness, data-efficient learning, and privacy-preserving
techniques will drive further progress in this critical domain.

3. Method

In this study, we used the convolutional neural network
(CNN) model VGG16 for medical image classification tasks.
The VGG16 model automatically extracts image features
through multi-layer convolution and pooling operations, and
then classifies through fully connected layers. In order to
describe the workflow and reasoning process of VGG16 in
detail, the structure of the model and its application in
medical image classification will be introduced below. Its
model architecture is shown in Figure 1.
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Figure 1. Model network architecture

The basic structure of VGG16 includes 16 layers, 13 of
which are convolutional layers and 3 are fully connected
layers. Each convolution operation extracts features from the
input image, using a small 3 x 3 convolution kernel, and the
convolution stride is usually 1, while the pooling operation
uses a 2 X 2 maximum pooling layer for downsampling to
reduce the dimension of the feature map. Assume that the
input image is A, where H represents the height of the image,
W represents the width of the image, and C represents the
number of channels. The convolution operation can be
expressed as:

Y =Conv(X)=f(X*W +b)

Among them, W is the convolution kernel, b is the bias,
* represents the convolution operation, f is the activation

function, and Y is the output feature map after the
convolution operation.

In VGG16, the convolutional layer is usually followed
by a maximum pooling layer, which performs
downsampling through a 2X2 pooling window. The pooling
operation can be expressed as:

Y, = Pool(Y)

The pooling operation reduces the spatial resolution of
the feature map by selecting the maximum value in the
pooling window, thereby effectively reducing the
computational complexity. The pooled feature map will be
input to the next convolutional layer for further processing.

The last few layers of VGG16 are fully connected
layers, which are used to classify based on the features
extracted previously. Assume that the output of the previous

layer is a feature vector =z e R , where N is the
dimension of the feature vector. The output of the fully
connected layer is calculated by the following linear
transformation:

y= sz+bf

Among them, Wf is the weight matrix of the fully

connected layer, bf is the bias, and y is the output

vector of the fully connected layer. Finally, we convert the
output vector into category probability through the softmax
function:
e
Py=k|X)=—5—
e}i
i=1

Where ), is the k-th element in the output vector of
the fully connected layer, K is the number of categories,
and P(y =k|X) is the probability that the input image
belongs to the k-th category.

During model training, we use the cross entropy loss
function to optimize the parameters of the network.
Assuming that the training set contains N samples, ), is

the true label of the i-th sample, and B is the probability
distribution predicted by the network, the cross entropy loss
function can be expressed as:

1 N K
= _NZ > vy log(y')

i=l k=1

—

Among them, y, is the value of the true label of

sample i in the k-th class, and )", is the predicted

probability of sample i in the k-th class. By minimizing the
cross entropy loss function, the network can continuously
adjust the weights and biases to improve the classification
accuracy.

In order to avoid overfitting and improve the
generalization ability of the model, this study adopted the
strategies of data augmentation and transfer learning. Data
augmentation technology expands the diversity of the data
set by rotating, translating, scaling and other operations on
the training data. Transfer learning uses the VGG16 model
pre-trained on a large-scale image dataset and transfers it to
the medical image classification task, thereby accelerating



the training process and improving the performance of the
model.

In general, the VGG16 model can effectively extract
high-level features from medical images and accurately
classify them through the structure of multi-layer
convolution, pooling and fully connected layers. By
optimizing the model's loss function and combining data
enhancement and transfer learning, the model can achieve
better performance in medical image classification tasks.

4. Experiment
4.1. Datasets

This study uses a public medical imaging dataset, Chest
X-rayl4, which contains chest X-ray images from 14
different types of diseases and is widely used for the
detection and classification of lung diseases. The dataset
contains about 100,000 chest X-ray images with an image
size of 1024 x 1024 pixels, covering a variety of lung
diseases, including pneumonia, tuberculosis, lung cancer,
acute bronchitis, etc. Each image is equipped with a
corresponding label to indicate whether there are relevant
lesions and disease types in the image. This dataset is
provided by the National Cancer Institute (NCI) of the
United States. It is a relatively comprehensive and
challenging medical imaging dataset suitable for the training
and verification of deep learning models.

Each image in the dataset has been annotated by
professional doctors to ensure the accuracy and reliability of
the labels. The label of each case image contains multiple
binary classification labels, indicating whether a specific
disease exists. Therefore, this dataset is not only suitable for
the classification problem of multiple diseases, but also can
be used for multi-label classification tasks. The image file
format is JPEG and has been standardized to ensure the
stability and efficiency of model training. The scale of the
dataset and the detailed annotation make it one of the
commonly used and standard evaluation datasets in the field
of medical image analysis.

To ensure the diversity and generalization ability of
model training, the images in the dataset have been
subjected to various data enhancement processes, such as
random cropping, rotation, flipping, etc., which enables the
model to adapt to different image transformations during
training and improves its robustness. Through the training of
this dataset, the VGG16 model can effectively learn the key
features in chest X-ray images and show a high accuracy in
the diagnosis of lung diseases. In addition, due to the certain
scale and representativeness of the dataset, its training
results can provide valuable reference for actual clinical
diagnosis.

4.2. Experimental Results

In order to verify the effectiveness of the proposed
VGG16 model in medical image classification, we
conducted comparative experiments with four classic image
classification models. First, we selected the traditional
convolutional neural network (CNN) as the baseline model
to evaluate its basic performance in medical image
classification. Secondly, we adopt the ResNet-50 model,
which alleviates the vanishing gradient problem in deep

networks by introducing residual connections and has
stronger feature learning capabilities. Then, we used the
Inception-v3 model, which can capture rich features in
images through the design of multi-scale convolution
kernels and is suitable for complex medical image analysis
tasks. Finally, we also chose a lightweight model -
MobileNet. MobileNet significantly reduces the number of
parameters of the model through depth-separable
convolution, making it suitable for application scenarios that
require low computing resources. All models were trained
under the same data set and training conditions, and their
performance was comprehensively compared using three
evaluation indicators: accuracy, recall, and F1-Score. The
experimental results are shown in Table 1.

Table 1. Experimental Results

Model ACC Recall F1-Score
CNN 82.4 80.3 81.3
Inception-v3 86.5 84.2 85.3
MobileNet 84.7 82.5 83.6
ResNet-50 88.0 86.1 87.0
VGG16 90.2 88.5 89.3

It can be seen from the experimental results that
VGG16 performed the most outstandingly in all evaluation
indicators, with a precision (ACC) of 90.2%, a recall rate
(Recall) of 88.5%, and an F1 score of 89.3%. VGG16 can
effectively extract useful features from medical images
through its deep network structure and hierarchical feature
extraction capabilities, especially its high performance in
classification accuracy and recall, indicating that it can
handle complex medical image tasks. It has strong
robustness and accuracy. Its advantage is mainly reflected in
the fact that deep convolutional networks can identify key
features of diseases in small differences in images by
learning and refining image features layer by layer,
significantly improving the classification performance of the
model. Therefore, the performance of VGG16 in medical
imaging diagnosis tasks provides an excellent reference
standard for other deep learning models.

Compared with VGG16, ResNet-50 also showed higher
performance in this experiment, with a precision of 88.0%, a
recall rate of 86.1%, and an F1 score of 87.0%. ResNet
effectively solves the vanishing gradient problem in deep
network training by introducing residual connections,
allowing deeper network structures to better capture
complex features in images. This gives ResNet certain
advantages in medical image classification, especially when
processing more complex images, it can ensure that the
information flow is effectively propagated in the network,
thereby improving classification performance. However,
although ResNet's performance is better, it is still slightly
inferior to VGGI16. This may be due to the higher
complexity of its network architecture, which may take
longer to tune during the training process, and has higher
requirements for data diversity.

Inception-v3 and MobileNet performed slightly worse
than VGG16 and ResNet-50 in this experiment. The
precision of Inception-v3 is 86.5%, the recall rate is 84.2%,
and the F1 score is 85.3%; the precision of MobileNet is
84.7%, the recall rate is 82.5%, and the F1 score is 83.6%.
Through its multi-scale convolution operation, Inception-v3
can capture a variety of features of the image, especially in



the details of the image, and can improve the robustness to
complex backgrounds. However, despite its advantages of
multi-scale convolution, Inception-v3 still performs worse
than VGG16 and ResNet-50 in precision and recall, possibly
due to the fact that this model requires more computing
resources and training time to achieve ideal classification.
Effect. As a lightweight model, MobileNet is mainly
optimized for devices with limited computing resources.
Although it performs well on mobile devices, its lower
precision and recall show its limitations in processing
complex medical images. Capabilities are limited. Although
MobileNet has optimized the number of parameters and
calculations to improve the running speed, its performance is
relatively average in actual medical image classification
tasks.

The CNN model performed the worst among all
compared models, with a precision of 82.4%, a recall rate of
80.3%, and an F1 score of 81.3%. This result shows that
although CNN, as a basic model in the field of deep learning,
can effectively extract image features, it has certain
limitations when facing complex medical images. The
structure of CNN is relatively simple and lacks deeper
feature learning capabilities and more complex network
structures to cope with complex patterns in medical image
classification. Its lower precision and recall indicate that
CNN cannot extract useful features as accurately as deeper
networks (such as VGG16 and ResNet-50) in the recognition
of small differences, complex backgrounds and irregular
shapes in medical images, resulting in Its performance on
this task is far inferior to other more complex models.

Overall, both VGG16 and ResNet-50 perform well in
medical image classification tasks, with VGG16 showing
particular strength. Its deeper convolutional layers and
robust feature extraction capabilities enable it to capture
more detailed information, leading to higher classification
accuracy and recall rates. Although Inception-v3 and
MobileNet each have their own advantages — Inception-v3
enhances feature learning diversity through multi-scale
convolution, while MobileNet improves computational
speed with its lightweight design — neither can match the
performance level of VGG16 and ResNet-50 in complex
medical imaging tasks. In addition, although the CNN model
is basic, its relatively simple structure and low performance
limit its application in actual medical imaging diagnosis.
Therefore, based on the experimental results, it can be
speculated that VGG16 and ResNet-50 are ideal choices for
medical image classification tasks, especially in tasks that
require high precision and high recall.

5. Conclusion

This study draws some key conclusions through
experimental comparison of five models, VGGI6,
ResNet-50, Inception-v3, MobileNet and CNN, in medical
image classification tasks. The experimental results show
that VGG16 outperforms other models in precision, recall
and F1 score, proving its superior performance in complex
medical image analysis. ResNet-50 follows closely behind,
effectively alleviating the gradient vanishing problem in
deep networks with its residual structure, and also showing
good classification performance. Although Inception-v3 and
MobileNet are innovative in model design, their
performance in processing complex medical images is

relatively weak, especially in recall and F1 score, which fail
to reach the level of VGG16 and ResNet-50. As a baseline
model, CNN has low classification accuracy and recall when
facing medical images, indicating that a deeper network
structure is crucial to improving classification performance.

Future research can further explore how to optimize
existing convolutional neural networks, especially in
medical image analysis, how to improve the accuracy and
robustness of the model by combining multiple network
architectures (such as the combination of VGG16 and
ResNet). In addition, with the continuous increase of
medical image data, how to use data enhancement, transfer
learning, and self-supervised learning techniques to further
improve the generalization ability of the model in small
sample data sets is also a direction worthy of in-depth
discussion. With the improvement of computing power and
innovation in model design, deep learning will play an
increasingly important role in the field of medical image
analysis, especially in early disease detection and precise

diagnosis and treatment, and has broad application
prospects.
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