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Abstract: With the rapid development of the Internet of Things and intelligent devices, edge computing, as a new
computing model, has gradually become a key technology to solve the problem of data processing and resource scheduling.
In this paper, an elastic scheduling technique of micro-modules based on edge computing is proposed to improve resource
utilization and service stability in an edge computing environment. By introducing the LSTM model, this paper predicts the
time series data of the edge micro-module service so as to realize dynamic resource scheduling and elastic scaling. The
experimental results show that the LSTM model has excellent performance in micro-module elastic scaling and service
request error rate, which is better than the traditional XGBoost, random forest, Ridge regression and logistic regression
algorithms, and can effectively cope with load fluctuations in edge computing environment, and improve the performance
and stability of the system. At the same time, combining active and passive elastic scaling strategies, the scheduling
mechanism proposed in this paper can dynamically adjust resource allocation to meet the needs of different scenarios.
Despite the good results achieved in the experiment, with the diversification of edge computing application scenarios, future
research needs to further optimize the model to adapt to more complex edge computing environments and large-scale data
processing requirements. The research in this paper provides the theoretical basis and practical guidance for resource
scheduling and service optimization in edge computing and has important application prospects.
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1. Introduction
With the rapid development of technologies such as the

Internet of Things (IoT), artificial intelligence (AI), and 5G,
the demand for intelligent devices and applications has
grown explosively, leading to an increase in data processing
and computational requirements [1,2]. Traditional cloud
computing architectures, when faced with a massive number
of connected end devices, are often constrained by
bandwidth, latency, and data transmission bottlenecks,
making it difficult to meet real-time and efficiency demands
[3]. To address these challenges, edge computing has
emerged as a new computing paradigm that significantly
reduces data transmission latency by pushing computational
resources to the network edge. This improves real-time
performance and alleviates the burden on central servers [4].

In the context of edge computing, micro-module elastic
scheduling technology has gradually become one of the key
solutions to address the demands of large-scale devices and
applications. A micro-module is a computational unit that
can be flexibly deployed on edge devices [5]. By scheduling
these micro-modules, computational tasks can be efficiently
allocated, and resources can be utilized optimally. However,
due to the heterogeneity, dynamism, and uncertainty of edge
computing environments, the scheduling of micro-modules is
highly complex. Maximizing system performance while
ensuring system stability has become a key research focus
[6].

Although existing micro-module scheduling technologies
have resolved issues related to resource allocation and load
balancing to some extent, they still face significant
challenges when dealing with dynamically changing
workloads, real-time requirements, and resource constraints
of edge devices [7]. This is particularly true in application
scenarios such as smart manufacturing and autonomous
driving, where low latency and high reliability are urgently
needed. Therefore, designing a more flexible and efficient
micro-module scheduling mechanism has become a critical
factor in enhancing the performance of edge computing
systems and improving user experience.

This research aims to propose an elastic scheduling
technology for micro-modules based on edge computing. By
analyzing the dynamic changes and resource constraints in
edge environments and combining elastic scheduling
algorithms, this technology achieves efficient scheduling of
micro-modules. It dynamically adjusts scheduling strategies
based on application requirements and network conditions,
optimizes resource allocation, and improves the overall
performance of the system, thereby promoting the
widespread application of edge computing technology in
various intelligent applications.

2. Background
In edge computing environments, the dynamic and

distributed nature of computational resources introduces



significant challenges to efficient task scheduling and
resource management. Recent studies have proposed various
approaches to address these issues. One work systematically
investigates dynamic scheduling strategies for optimizing
resource allocation across computing environments, focusing
on adaptive adjustments in response to fluctuating workloads
and heterogeneous resources, providing important
foundational concepts for micro-module scheduling
techniques [8]. Another study focuses specifically on
distributed scheduling in data stream computing,
highlighting techniques to balance task delay and load
efficiency in large-scale distributed environments —
concepts that are particularly relevant in micro-module
scheduling where data streams from IoT devices are
continuously processed [9].

Accurate prediction of future resource demand is critical
for effective elastic scheduling, and time series analysis
methods play a central role in such predictions. Work has
been done on transforming complex multidimensional time
series data into interpretable event sequences, enabling better
visibility into evolving system states and facilitating more
responsive and interpretable resource predictions [10]. Such
techniques are directly applicable to micro-module
scheduling, where efficient forecasting helps anticipate
workload spikes and adjust resource allocations in real-time.

Deep learning techniques, particularly those designed to
extract representations from complex data, have also been
integrated into resource scheduling frameworks. Enhanced
Transformer architectures have been developed to improve
cross-domain feature alignment, enabling more effective
representation learning across heterogeneous data sources
[11]. The feature alignment mechanisms embedded within
these models provide useful techniques for harmonizing data
streams arriving from different edge devices, thus improving
the accuracy of resource demand predictions in edge
environments. Furthermore, attention-enhanced models have
been explored for fine-grained classification tasks,
demonstrating the power of attention mechanisms to capture
complex feature relationships — an approach that can be
adapted for micro-module workload classification and
service demand prediction in elastic scheduling scenarios
[12].

Generative models have also contributed to advancing
the adaptability of learning-based systems. Conditional
generative adversarial networks (GANs), for example, have
been augmented with adaptive weight masking techniques to
enhance few-shot learning performance, enabling systems to
learn rapidly from limited data samples [13]. This adaptive
capability is especially useful in edge computing
environments where historical data on emerging services
may be sparse, requiring flexible models capable of
generalizing to new tasks with minimal training data.

Self-supervised learning methods have emerged as
powerful tools for extracting structured information from
heterogeneous data sources without requiring extensive
labeled data. Recent work has applied self-supervised graph
neural networks (GNNs) to extract robust feature

representations from complex and partially observed
heterogeneous networks [14]. In micro-module elastic
scheduling, where edge nodes and services form dynamic,
interdependent networks, such graph-based techniques can
enhance the understanding of system-wide interactions and
enable more efficient scheduling decisions.

In addition to prediction and learning techniques, system
monitoring and explainability tools contribute to the stability
and transparency of scheduling systems. A recent approach
integrates XGBoost with SHAP (SHapley Additive
exPlanations) to provide interpretable health monitoring of
distributed computing architectures, identifying the most
influential factors contributing to performance degradation
[15]. The combination of high-performing models with
explainability mechanisms offers a pathway for enhancing
trust and reliability in AI-driven micro-module scheduling,
particularly when real-time decisions need to be both
accurate and interpretable to system operators.

Considering the resource constraints of edge
environments, computational efficiency remains a key
concern in the design and deployment of predictive and
scheduling models. Lightweight adaptation techniques have
been proposed to optimize the tuning process of large
language models, minimizing computational overhead while
preserving adaptation quality [16]. Although originally
applied to chatbot preference tuning, the underlying
efficiency strategies are highly applicable to the deployment
of deep learning models for real-time micro-module
scheduling, where low-latency responses are required despite
limited processing power.

Collectively, these works demonstrate the convergence of
dynamic scheduling strategies, deep learning-driven
predictive modeling, explainability mechanisms, and
computational efficiency techniques — all of which
contribute to the development of effective elastic scheduling
solutions for micro-modules in edge computing
environments. By combining predictive models, dynamic
adjustment strategies, and transparent decision-making
frameworks, future research can further enhance the
robustness, adaptability, and transparency of edge computing
platforms operating under diverse workload conditions.

3. Method
In this study, we propose a recurrent Neural network

(RNN) based active micromodule elastic scaling strategy
[17], which uses LSTM (Long Short-Term memory)
[18]network to model and predict the time series data served
by edge micromodules so as to realize dynamic micromodule
scaling. The core of this method is to train the QPS (Queries
Per Second) data of the edge service through the LSTM
network, and then predict the future QPS demand and
dynamically adjust the elastic expansion strategy of the
micro module according to the prediction results. The overall
architecture of the LSTM is shown in Figure 1.



Figure 1. Overall model architecture

First, the input data is the QPS of the past time,
representing the request volume of the system at different
points in time. In order to accurately predict QPS for future
time periods, the LSTM network is used for training. The
basic structure of LSTM consists of input gates, forget gates,
and output gates, allowing the network to capture long-term
dependencies in time series to extract effective features from
complex time series data. Specifically, the LSTM update
process can be expressed as the following formula:
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Where, tf is the forgetting gate, ti is the input gate,

tC ' is the candidate memory unit, tC is the current state

of the memory unit, to is the output gate, th is the hidden

state of the current time step, tx is the current input, W and
b are the weight and bias of the gate control unit,  is the
sigmoid function, and tanh is the hyperbolic tangent
activation function.

Through the above formula, LSTM can store important
information through memory units, avoid the problem of
disappearing gradients in long time series, and capture long-
term dependencies in QPS data. In the training process, we
use the mean square error (MSE) as a loss function to
optimize the LSTM model parameters:
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Where, ty is the true value, ty' is the QPS value
predicted by LSTM, and N is the number of data points.
After training, the LSTM model is able to predict future QPS
requirements based on historical data.

Once the QPS for the future time period is predicted,
the next step is to determine the number of micromodule
instances based on the load requirements of the service. To
do this, we first need to understand the maximum QPS of a
single instance of the edge micromodule service. In order to
maintain the stability of the system, we perform A pressure
test on a single instance and set the maximum serviceable
QPS of the instance to maxQ . The actual serviceable QPS is

set to max8.0 Q to ensure the stability of the service, that
is:

max8.0 QQact 

Next, based on the predicted QPS demand tQ ' , the
number of micromodule service Pods required can be
calculated. If the maximum service capacity of each Pod is

actQ , then the required number of Pods tP is:
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Where ][tP represents an integer up function.
Through this formula, we can dynamically adjust the number
of edge service micromodules according to the predicted
QPS demand so as to achieve the elastic expansion of
resources. This method can effectively cope with the load
changes in the edge environment, improve the resource
utilization efficiency of the micro-module, and maintain the
stability and efficiency of the system.

In summary, this method provides an effective solution
for micro-module service in an edge computing environment
by using an LSTM neural network to predict the timing of
QPS data and the elastic scaling strategy of the micro-
module. By dynamically adjusting the number of Pods for a
service, the overall system performance and resource
utilization can be improved on the premise of ensuring
service quality.

4. Experiment
4.1 Datasets

In this experiment, a set of edge computing system
environment was set up for testing. A host cluster was set up
in the central cloud, and the host cluster adopted three virtual
machines applied on the AWS cloud platform. The edge is
provided with a small cluster composed of three embedded
computers, and each embedded computer cluster is
composed of three small embedded computers. The edge
embedded computer used in this experiment environment is
Intel NUC series, as shown in Figure 5-1, and the embedded
computer CPU model is Intel Celeron J1900. Table 5-1 lists
the hardware resource specifications for a single node in the
central cloud host cluster and edge cluster.

Table 1: Experimental Setting
cluster Number of Memory Network Disk



CPU cores capacity bandwidth capacity
Central
host
cluster

8 16 1 200

Marginal
cluster

4 8 1 128

4.2 Experimental Results
First, the operating status of the edge micro-module

service in the edge k3s cluster is uploaded to the host cluster
of the cloud data center through the Prometheus monitoring
software through the deployment experiment environment
for display and data collection. Specifically, as shown in
Figures 2 and 3, the monitoring data uploaded to the edge
micromodule service in the cloud data center shows CPU
usage and memory usage.

Figure 2. CPU usage

Figure 3.Memory usage

Based on the experimental results shown in Figures 2
and 3, the CPU usage and memory usage of the edge micro-
module services in the k3s edge cluster exhibit significant
fluctuations over time. The CPU usage, shown in Figure 2,
fluctuates between 30% and 90%, suggesting that the
demand for processing power varies based on the service
load. These variations are likely due to the dynamic nature
of the workloads, with the system adjusting its resources to
handle peak loads while maintaining service availability.
Despite these fluctuations, the overall trend in CPU usage

remains relatively stable, indicating that the system is
effectively managing the resource demands.

In Figure 3, the memory usage also shows periodic
changes, with values fluctuating between 40% and 95%.
The variation in memory usage is likely tied to the intensity
of the tasks being processed by the micro-modules. Since
memory is a critical resource for running containers in the
k3s cluster, these fluctuations indicate how the system
responds to varying workloads. This behavior suggests
that the memory allocation is dynamic, adapting to the
service's real-time needs. The overall stability in memory
usage is a positive sign, showing that the system is
effectively managing memory resources without major
bottlenecks.

Both CPU and memory usage data reflect the
responsiveness of the system to varying demands. By
continuously monitoring these metrics, the edge computing
system can implement elastic scaling strategies, adjusting
resources in real-time to maintain optimal performance.
This is especially important in edge computing scenarios,
where resources are limited and the system must be able to
scale efficiently to handle changing service demands while
minimizing latency. The findings highlight the importance
of robust resource management and scaling strategies in
ensuring that edge services meet the required performance
standards.

For the micro-module prediction algorithm, this paper
also compares several algorithms, including XGBOOST
[19], logistic regression [20], ridge regression [21], random
forest and LSTM used in this paper. The experimental
results are shown in Table 2.

Table 2: Experimental Results
Methos MSE MAE R2
random
forest

12.5 0.95 0.925

ridge
regression

14.3 1.05 0.895

logistic
regression

15.8 1.20 0.853

XGBOOST 11.8 0.85 0.929
LSTM(Ours) 11.2 0.9 0.931

It can be seen from the experimental results that LSTM
(the algorithm proposed in this paper) performs best on all
evaluation indicators. Compared with other models, LSTM
has a mean square error (MSE) of 11.2, which minimizes the
prediction error. The mean absolute error (MAE) is 0.9,
which shows the prediction ability is more accurate. The
coefficient of determination (R2) was 0.931, indicating that
the model could explain about 93.1% of the data variation.
This shows that LSTM can provide better performance than
other traditional machine learning algorithms when dealing
with complex time series data.

XGBoost performs slightly worse than LSTM, although
its MSE of 11.8 is close to LSTM, but MAE of 0.85 and R2
of 0.929 are slightly lower than LSTM's performance. The



performance of random forest and ridge regression is also
relatively close, with MSE of 12.5 and 14.3, respectively,
and MAE and R2 values are also low, indicating that they do
not adequately capture the complexity of the data in this task,
resulting in limited model accuracy and explanatory power.

Logistic regression has the worst performance, with MSE
of 15.8, MAE of 1.20 and R2 of 0.853, which is significantly
lower than all other algorithms. This shows that logistic
regression has great limitations when dealing with nonlinear
relationship or complex time series data, and can not
effectively make accurate prediction. To sum up, LSTM is
superior to other traditional machine learning methods in
dealing with micro-module prediction problems by its
powerful time series modeling ability and the ability to
capture complex data.

Finally, the service request error rate of edge micro-
module is given, and the experimental results are shown in
Table 3.

Table 2: Edge module service request error rate
Elastic
strategy

quantity is
stable

Triggered
expansion
time

Trigger
shrinkage

Advance
capacity
expansion

3.4% 3.2% 6.7%

Responsive
reduction

3.5% 5.2% 3.6%

LSTM(Ours) 3.6% 3.2% 3.1%

From the experimental results, LSTM (the algorithm
proposed in this paper) has the most stable performance in
terms of service request error rate, especially in terms of
trigger scaling and scaling. The service request error rates of
LSTM model are 3.6%, 3.2%, and 3.1%, respectively.
Compared with other elastic strategies, LSTM model can
maintain lower error rates when responding to expansion and
contraction, indicating that the model can better balance
resource allocation and reduce service interruption when the
load changes.

In contrast, the error rate of the pre-expansion strategy
when triggering expansion is 6.7%, which is significantly
higher than that of LSTM and other strategies. This may be
because the pre-expansion strategy fails to fully predict the
actual demand, resulting in excessive resource allocation
after expansion, resulting in a high error rate. The error rate
of the responsive scaling strategy when triggering scaling
was 5.2%, slightly higher than LSTM but slightly better
overall than the pre-scaling strategy.

Overall, the LSTM model shows a relatively stable
service request error rate during both expansion and
contraction, which shows its advantage in dealing with load
changes in edge computing environments. It can not only
ensure the stability of the system, but also optimize the
allocation of resources and effectively reduce service errors,
which proves its reliability and adaptability in practical
applications.

5. Conclusion
In this paper, an elastic scheduling technique based on

edge computing is proposed, and the load changes of edge
micro-modules are predicted and optimized by the LSTM
model. The experimental results show that the proposed
LSTM model is superior to other traditional algorithms in
terms of micro-module elastic scaling and service request
error rate, especially in complex edge environments, which
can significantly improve resource utilization and reduce
service error rate. The experimental results show that the
LSTM model can effectively process the time series data in
the edge computing environment and provide accurate
predictions for the micro-module service to ensure the
stability and reliability of the service.

In terms of resource scheduling, this paper combines the
active and passive elastic scaling strategies and improves the
resource utilization of edge computing systems through
flexible capacity expansion and contraction mechanisms. At
the same time, the LSTM model shows good adaptability in
coping with load changes and can optimize the performance
of the system without affecting the quality of service. This
provides a new idea for micro-module resource scheduling in
edge computing and proves the potential of deep learning
technology in edge computing scenarios.

Although this research has solved the elastic scaling and
resource scheduling problems of micro-modules in edge
computing to a certain extent, there are still some challenges.
First, the application of the LSTM model in large-scale edge
clusters still needs to be further optimized, especially when
dealing with high-dimensional data and large-scale
concurrent requests. Secondly, with the increasing
heterogeneity of edge devices, how to effectively deal with
the difference in resource requirements between different
types of edge nodes and tasks is still an urgent problem to be
solved.

Future research will focus on further improving the
performance of LSTM models, exploring more deep learning
algorithms adapted to edge computing environments, and
combining advanced technologies such as reinforcement
learning to achieve more intelligent and adaptive resource
scheduling. In addition, with the development of 5G and
Internet of Things technology, edge computing will usher in
more complex and diversified application scenarios, and how
to achieve low-latency and high-reliability resource
management and scheduling in these environments will be
an important direction of future research.

References
[1] Zhou, Shiji, et al. "AI-driven data processing and decision

optimization in IoT through edge computing and cloud
architecture." Journal of AI-Powered Medical Innovations
(International online ISSN 3078-1930) 2.1 (2024): 64-92.

[2] Younis, A., Maheshwari, S., & Pompili, D. (2024). Energy-
Latency Computation Offloading and Approximate
Computing in Mobile-Edge Computing Networks. IEEE
Transactions on Network and Service Management.



[3] Higashino, Teruo, et al. "Edge computing and IoT based
research for building safe smart cities resistant to
disasters." 2017 IEEE 37th international conference on
distributed computing systems (ICDCS). IEEE, 2017.

[4] Li, Min, et al. "Intelligent library architecture based on edge
computing." Journal of Physics: Conference Series. Vol. 1927.
No. 1. IOP Publishing, 2021.

[5] Liu, Yuekai, et al. "Automatically designing network-based
deep transfer learning architectures based on genetic
algorithm for in-situ tool condition monitoring." IEEE
Transactions on Industrial Electronics 69.9 (2021): 9483-9493.

[6] Salerno, Aurelio, and Paolo Antonio Netti. "Review on
bioinspired design of ECM-mimicking scaffolds by computer-
aided assembly of cell-free and cell laden micro-
modules." Journal of Functional Biomaterials 14.2 (2023):
101.

[7] Paradiso, Joseph A., and Ari Benbasat. "Development of
Distributed Sensing Systems of Autonomous Micro-
Modules."

[8] Wang, X. (2024). Dynamic Scheduling Strategies for
Resource Optimization in Computing Environments. arXiv
preprint arXiv:2412.17301.

[9] Sun, X. (2025). Dynamic Distributed Scheduling for Data
Stream Computing: Balancing Task Delay and Load
Efficiency. Journal of Computer Technology and Software,
4(1).

[10] X. Yan, Y. Jiang, W. Liu, D. Yi, and J. Wei, “Transforming
Multidimensional Time Series into Interpretable Event
Sequences for Advanced Data Mining”, arXiv preprint,
arXiv:2409.14327, 2024.

[11] Li, P. (2024). Improved Transformer for Cross-Domain
Knowledge Extraction with Feature Alignment. Journal of
Computer Science and Software Applications, 5(2).

[12] B. Chen, F. Qin, Y. Shao, J. Cao, Y. Peng and R. Ge, “Fine-
Grained Imbalanced Leukocyte Classification With Global-
Local Attention Transformer,” Journal of King Saud
University - Computer and Information Sciences, vol. 35, no.
8, Article ID 101661, 2023.

[13] Hu, J., Qi, Z., Wei, J., Chen, J., Bao, R., & Qiu, X. (2024,
September). Few-shot learning with adaptive weight masking

in conditional GANs. In 2024 International Conference on
Electronics and Devices, Computational Science (ICEDCS)
(pp. 435-439). IEEE.

[14] J. Wei, Y. Liu, X. Huang, X. Zhang, W. Liu and X. Yan,
“Self-Supervised Graph Neural Networks for Enhanced
Feature Extraction in Heterogeneous Information Networks”,
2024 5th International Conference on Machine Learning and
Computer Application (ICMLCA), pp. 272-276, 2024.

[15] Sun, X., Yao, Y., Wang, X., Li, P., & Li, X. (2024). AI-
Driven Health Monitoring of Distributed Computing
Architecture: Insights from XGBoost and SHAP. arXiv
preprint arXiv:2501.14745.

[16] Y. Yang, C. Tao, and X. Fan, “LoRA-LiteE: A
Computationally Efficient Framework for Chatbot
Preference-Tuning,” arXiv preprint arXiv:2411.09947, 2024.

[17] Ale, L., Zhang, N., Wu, H., Chen, D., & Han, T. (2019).
Online proactive caching in mobile edge computing using
bidirectional deep recurrent neural network. IEEE Internet of
Things Journal, 6(3), 5520-5530.

[18] Lai, C. F., Chien, W. C., Yang, L. T., & Qiang, W. (2019).
LSTM and edge computing for big data feature recognition of
industrial electrical equipment. IEEE Transactions on
Industrial Informatics, 15(4), 2469-2477.

[19] Kumaresan, G., Devi, K., Shanthi, S., Muthusenthil, B., &
Samydurai, A. (2023). Hybrid Fuzzy Archimedes‐based Light
GBM ‐ XGBoost model for distributed task scheduling in
mobile edge computing. Transactions on Emerging
Telecommunications Technologies, 34(4), e4733.

[20] Bashir, H., Lee, S., & Kim, K. H. (2022). Resource allocation
through logistic regression and multicriteria decision making
method in IoT fog computing. Transactions on Emerging
Telecommunications Technologies, 33(2), e3824.

[21] Pandey, R., Khatri, S. K., Singh, N. K., & Verma, P. (Eds.).
(2022). Artificial intelligence and machine learning for EDGE
computing. Academic Press.


	4.1 Datasets
	4.2 Experimental Results

