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Abstract: This paper proposes a novel hierarchical generator adversarial network based on Vision Transformers (ViT) for
unconditional image generation. To address common challenges such as structural inconsistency and unstable training in
GANs, we introduce the Triplet Attention mechanism within the generator, enhancing the structural soundness of generated
images without increasing the model ’s parameter size. Additionally, a consistency regularization term is integrated into the
loss function, improving the training stability and robustness to noise while mitigating overfitting. The effectiveness of the
proposed method is demonstrated through extensive experiments on the CIFAR-10 and STL-10 datasets, where our
framework outperforms TransGAN and other CNN-based GANs in both FID and IS metrics. Despite the simplicity of our
architecture, which contains only three transformer layers, we achieve promising results, laying the groundwork for further
enhancements in high-resolution image generation.
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1. Introduction
Generative Adversarial Nets (GAN) [1], as one of the

most interesting models in the field of computer vision, has
attracted a lot of interest and attention from researchers.
Today, there are various generative models that are used for
different tasks, such as image generation, image style
transfer, text to image, image super-resolution, 3D
reconstruction, and even video generation. Generative
models not only play a huge role in image processing
applications, but also play a crucial role in the development
of Artificial Intelligence (AI) and Deep Learning (DL)[2]. It
is well known that DL requires a large number of samples
for training, and the traditional manual collection methods
have been difficult to meet the demand in terms of quantity
and huge cost. Thus, the sample generation task is like
adding a constant stream of fuel to the speeding train of DL.

Early generative models include Restricted Boltzman
Machine(RBM)[3] that have intractable likelihood functions
and VAE[4] that based on the variational Bayesian inference.
In 2014, Goodfellow et al. proposed GAN, which was
trained with backpropagation and no need for any Markov
chains[5] or unrolled approximate inference networks[6,7],
which makes it stand out from the rest of the models.
However, it is difficult for GAN to control the generated
results for complex datasets. Therefore, CGAN put a
conditional variable c together with both random variable z
and real data x to guide the data generation process, and it
can inspire subsequent tasks such as image style transfer, text
to image etc. Based on CNN and GAN, A. Radford et al.
proposed DCGAN[8], which achieved good performance in

computer vision(CV) field. Image Transition task is an
important

subsequent task of image generation. Pix2pix collects a
same dataset in two different styles and one of two styles
plays as the conditional input with U-NET[9] and
PatchGAN[10]. CycleGAN[11] generates samples for twice
to eliminates the requirement for matching images in target
domain. StarGAN[12] learns among multi-domains and
gains a surprising performance. SyleGAN[13] can separately
control different factors of the image appearance. Text image
generation tasks have become increasingly interesting in
recent years. DCGAN[8] can be used to generate naked-eye
acceptable images from text descriptions. StackGAN[14]
gave a two-stage generation approach to improve the
resolution and stability of text-generated images.
Seq2Seq[15] generates images that include the spatial layout
of multiple objects and the attributes of each object,
including pose, expression, etc.

In recent years, although GANs have yielded good results
in recent years for different tasks, its development is often
accompanied by some tricky problems, such as model
collapse, unstable training, and unreasonable structure of
generated images etc. WGAN[16] solves the model collaps
and the gradient disappearance problems by modifying the
distance in the loss function. ProGAN[17] combines layer-
by-layer generation from low- resolution to high-resolution
with smooth embedding to improve the stability of the
training process for high-resolution image generation. In
order to capture the global dependencies from images,
attention mechanism was introduced in CV[18,19],
SAGAN[20] introduces self-attention mechanism[21,22] to



GAN for generating images and it is effective in modeling
long-range dependencies.

Inspired by the properties of the attention mechanism,
transformer[23] has made a huge breakthrough in the field of
NLP. By introducing transformer to the CV field, Sharir G.
el al. proposed ViT[24] that made a major breakthrough by
introducing transformer to the CV field. Recently proposed
TransGAN[25] used two pure Transformer to generate high-
resolution images on GAN architecture, which can surpass
some then-popular CNN-based GAN. TransGAN aims to be
the first pilot study to build a pure transformer-based GAN,
only using some of the techniques necessary to confirm the
advantages of transform-based GAN. In subsequent research,
many researchers also made many improvements on this
foundation. In addition, the transformer-based structure
requires more data compared to CNNs, and experiments
indicate that a significant advantage can only be shown only
on large-scale datasets.

Since the data in the hidden layer is presented as multiple
channels, and it also contains a large amount of information
on different channels, it is not enough to carry out attentional
computation in the spatial dimension alone. However, too
much attention mechanism is bound to seriously affect the
computation speed. Recently Diganta M. et al.[26] have
proposed a lightweight but effective attention mechanism
called triplet attention, by which different network
architectures with almost no parameter growth can obtain
better classification results. In addition, some researches
indicate that there are two significant problems in DL for a
long time. One is that the model can easy to cause over-fit
and the other one is that the results may be affected when a
model is affected by a tiny noise. To solve these problems,
semi-supervised learning introduces consistent
regularization[27,28] Inspired of that, we introduce the
bCR[29] into our loss function in this paper, in which the
results are free from the affects of noises and the over-fitting
is avoided as far as possible.

To sum up, our contributions are summarized as follows:

1.The Triplet-attention mechanism is introduced to the
generator to increase the structural soundness of the
generated images without increasing the size of the
parameters.

2.The loss function is improved by adding consistency
regularization to make the training process more stable.

3.The proposed approach is evaluated on two public
datasets including CIFAR-10 and STL-10, where FID and IS
evaluation metrics of the proposed framework outperformed
TransGAN as well as some CNN-based GANs.

2. Related Works
2.1 Generative Adversarial Nets (GANs)
The GANs usually contains at least two neural network

models. One is called generator (G) and the other is called

discriminator (D). The role of G is to learn to capture the
distribution Pdata of real data x and generate a new data G(z),
and D acts like a classifier to give the probability that its
input data, G(z) and x, is from the real data set and and
provide feedbacks for the learning of G through the loss
function. The goal of G is to make the generated data
distribution Pz as similar as possible to the real data
distribution so that D believes that the generated data comes
from the real data set, and the goal of D is to distinguish the
true source of its input data, G(z) and x, as much as possible.
D and G play the two-player minmax game until a Nash
equilibrium is reached. The loss function can be expressed as
follow Equation:

During the training process, G and D are trained
alternately until eventually D is unable to distinguish the
source of the data. The original GAN is implemented by
Fully Connection (FC) Networks and piecewise linear units.
As more and more researchers have proved that the
development of CNN is better than FC [30,31], DCGAN
replaces all fully connected layers with CNN on the GAN,
and uses batch normalization (BN) [32] to accelerate
convergence and reduce over-fitting. This is the first GAN
network structure with full convolution, which improves the
resolution of the generated images. ProGAN adopts a
progressive training network architecture from low to high
resolution, and performs smooth embedding and pixel-wise
normalization between different resolutions to ensure the
stability of training. Meanwhile, ProGAN removes the BN
layer and only adds mini-batch to the last layer of D to
improve the diversity of the generated images. Since CNN
networks usually have small convolutional kernels, it is
necessary to stack multiple layers of convolution for
obtaining long-range dependencies. However, multiple layer
convolutions make it difficult to optimize the algorithm and
parameters. SAGAN introduces Self-attention mechanism to
obtain dependencies at a distance at one level instead of
multi-layer convolution operation. Meanwhile, SAGAN also
introduces Spectral normalization for both G and D to
stabilize the training process. Following the confirmation of
the good performance of transformer on image classification
tasks [24,33], TransGAN is a pure transformer-based GAN.
Its G can incrementally increase feature resolution while
reducing embedding size. It also introduces multi-task co-
training for G with self-supervised auxiliary loss, and
localized initialization for self- attention to make the training
better.

2.2 Vision in Transformer (ViT)
Transformer has become the model of choice in Natural

Language Processing (NLP) by 2021, such as BERT [34]
andGPT-3[35]. However, there is no good breakthrough in
the CV field. Although Cordonner et al. [36] had already
applied transformer to CV tasks before ViT was published,
ViT's model was simpler and more effective and scalable in
comparison. Therefore, it became a milestone for
transformer in the CV field, and also attracted extensive



research. Before ViT, it was widely believed that CNNs were
more suitable for processing image information than
transformers, because the structural properties of
transformers made it possible to only process sequential
information.

If a visual problem is transformed into a seq2seq problem,
patch embedding is necessary. ViT divides the input image
into multiple patches, and then projects each patch into a
fixed-length vector. ViT also needs to join the positional
encoding, which can be understood as a list of N rows (N is
the length of the input sequence), and each row represents a
vector with the same dimension as the input sequence
embedding. Then the patch and position embedding are acted
as input to combine into transformer blocks. In a transformer
block, it is worth mentioning the multi-head attention, which
is to improve the information extraction ability, and therefore
combines the results of attention operation of these ways.
The input and output dimensions of the transformer block are
the same, in which multiple layers can be stacked to increase
the depth of the network.

3. Methodology
In this section, we introduce our architecture, which

consists of a Transformer-based hierarchical generator,
triplet attention and balanced consistency regularization in
loss function.

3.1 Transformer-based Hierarchical Generator
We construct a hierarchical generator based on the

transformer, as shown in Figure 1, where we take a 256-
channels random noise z∈N(0,1) as the input signal and
feed it into the generator. Through an MLP, we reshape a 1-
dimensional sequence into a 2-dimensional image feature
Xi∈RHi×Wi×C, and then through a learnable position
embedding layer, the tensor is fed into the transformer blocks
as the input signal. In the transformer blocks, we use a 4-
head attention mechanism to obtain the relevance of the data,
and then reshape the feature as Xi∈R2Hi×2Wi×C/2. In this
way, we boost our feature map layer by layer by pixel-
shuffle after the fist and second blocks. Finally, after a triplet
attention, we convert our output signal into a 32 × 32
resolution image with RGB 3 channels using a convolutional
layer.

Figure 1. The architecture of our generator

3.2 Pixel-shuffle
Considering the full utilization of channel information, we

use pixel shuffle for all of the upsampling processes, moving
pixels from the channel dimension to the aspect dimension to
achieve upsampling. This implementation process is not to
generate high-resolution image directly by interpolation, but

to get the feature map of r2 channels by convolution (r is the
upscaling factor i.e. image expansion ratio), whose size is the
same as the input low-resolution image, and then get this
high-resolution image by aperiodic shuffling method.

3.3 Triplet Attention
Triplet attention[26] consists of 3 parallel Branches, in

which two are responsible for capturing the cross-
dimensional interactions between channel C and space H/W,
and the last one is used to construct Spatial Attention. The
outputs of the final 3 Branches are aggregated using
averaging. The advantage is that it is possible to model
inexpensive but effective channel attention without involving
any dimensionality reduction. Unlike CBAM[37] and
SENet[38], which require a certain number of learnable
parameters to build dependencies between channels, Triplet
attention models channel attention and spatial attention
almost parameterlessly. It first transfers the input tensor
Xi∈RC×H×Winto three branches. In each branch, a two-by-
two interaction is established between C and H/W. It can be
represented by the following Equation:

where the y1 represents the interactions between H and C,

and y2 represents the interaction between C and W, both
with the 90°clockwise rotation to retain the original input
shape of C×H× W, y3 represents the interaction between H
andW without any rotation.

Figure 2. The architecture of our GAN

3.4 Loss Function with Balanced Consistency
Regularization
According to CR-GAN[39], an encouraged discriminator can

produces similar outputs for an image and their augmentation
according to the characteristics of consistency regularization. So
we fed real images x and their augmented ones T(x) into the
discriminator. However, when augmented images contain visual
artifacts during the process of data augmentation, it can also
result in generated images. To avoid this phenomenon, we also
put augmented generated images T(G(z)) into discriminator,



which is shown Figure 2. We also introduce the loss function of
WGAN-GP[40] to control the gradient during the training
process. Therefore, the total loss function of discriminator is
given as follow:

where Lwgangp-eps is following the setting of WGAN
and WGAN-GP, λ equals to 1.

4. Experiments
4.1 Implementation Details
Firstly, we choose the datasets of CIFAR-10 and STL-10

for "small-scale" dataset image generation task. There are
60,000 images with 32×32 resolution in the CIFAR-10
dataset, which consists of 50,000 training samples and
10,000 testing samples. And the STL-10 dataset consists of
100,000 unlabeled images with 96×96 resolution( we resize
it to 48×48). We set batch size 32 for generator while 26 for
discriminator. The augmentation strategy is flip and crop. All
experiments are set with 2 2080Ti GPUs. Learning rate for
both G and D is 1e-4.

4.2 Evaluation Metrics
We select two evaluation metrics to measure the

performance of the algorithm, which are respectively
Inception Score (IS) [41] and Fréchet Inception Distance
(FID) [42].

The definition of IS is given as follows:

where Ex~Pg means to iterate through all the generated
samples and find the average. DKL represents the KL
divergence, so DKL(P||Q) denotes the degree of
approximation between P and Q. p(y|x) means that for
picture x, the probability distribution of belonging to all
categories and p(y) is the Marginal probability. We want
to generate images that are clear enough and generate a
variety of categories, the larger the IS the better.

The definition of FID is given as follows:

where μx and μg represents the mean value of the
features of the real image and generated image
respectively. ∑ represents the covariance matrix of the
image. Tr is the Trace. Unlike IS, FID considers more the
distance between the generated image and the real image,
and the smaller the distance, the better the generated
model is.

4.3 Results
The generated samples and samples from real datasets

both on CIFAR-10 and STL-10 are shown in Figure 3
and Figure 4:

(a) By our method

(b) Real samples

Figure 3. On CIFAR-10 dataset
The figure above shows that the samples generated by our

model on the CIFAR-10 dataset can be easily recognized as
belonging to their respective categories, with very few
instances of blurriness or distortion.

As demonstrated in the figure above, our model is
capable of generating samples on the STL-10 dataset that
produce images which are fairly realistic, but with some
degree of distortion.
In order to illustrate the effectiveness of the proposed

method, we selected several representative methods as the
comparison algorithms, which include TransGAN[25],
WGAN-GP[41], SN-GAN[43], AutoGAN[44],
AdversarialNAS-GAN[45], ProGAN[17], and
StyleGANs[46]. For CIFAR-10 dataset, our GAN ’s FID is



at the best, and only StyleGANs surpass our method on IS
as shown in Table 1, our model scored more than 27% of
the score of TransGAN on FID.

(a) By our method

(b) Real samples

Figure 4. On STL-10 dataset
For STL-10 dataset(48×48), since a deeper network and

grid self-attention are used for generative tasks with a
resolution higher than 32×32 in the original TransGAN and
our network contains only three layers without grid self-
attention, which is a very simple architecture. Therefore, our
model's generated samples were not superior to TransGAN's
performance on the STL-10 dataset. However, our model
did perform better than some of the CNN-based GANs.

Table 1. FID and IS between some previous GANs and
ours

Methods CIFAR-
10

Scheme
3

FID↓ IS↑ FID↓ IS↑

WGAN-GP 39.68 6.49±0.09 - -

SN-GAN - 8.22±0.05 40.1 9.16±0.12

AutoGAN 12.42 8.55±0.10 31.01 9.16±0.12

AdversarialNAS-
GAN

10.87 8.74±0.07 26.98 9.63±0.19

ProGAN 15.52 8.80±0.05 - -

StyleGAN-V2 11.07 9.18 20.84 10.21±0.14

TransGAN 9.26 9.02±0.12 18.28 10.43±0.16

ours 7.68 9.05±0.08 27.43 9.23±0.2

We present a comparison of the sensory perception
between the samples generated by our method and those
produced by TransGAN on STL-10 dataset, as depicted in
Figure 5.

(a) By our method



(b) By TransGAN
Figure 5. Comparison on the STL-10 dataset

Based on the figure shown above, although it is noticeable
that our model's generated samples display a gap in
performance compared to TransGAN's generated results in
terms of FID and IS, however, the perceptual difference is
not very obvious.

4.4 Ablation Studies
To evaluate the performance of Balanced Consistency

Regularization(bCR) [29], Triplet Attention [26], we
separately adding these techniques to the basic model and
compare their FID score and IS score on CIFAR-10 dataset,
which is shown in Table 2. They achieve the best
performance on FID. However, when we add the triplet
attention, the performances are dropped on IS. The ablation
study shows that the model with Consistency Regularization
has a significant score improvement on both FID and IS, i.e.,
48% and 5% respectively. The performance of Triplet
attention is 2% upper and 1% lower on our model with
Consistency Regularization. This may be because the
measurement of IS is different from that of FID. When we
add Triplet attention in our generator, it surely can gain
information well on space and channels. So, the FID score
performs better, which means that the generated images are
more similar to the real images, but the categories may be
more homogeneous or the clarity may be affected.

Table 2. The effects of different techniques in our method on
CIFAR-10 dataset

Methods FID↓ IS↑

Ours original 11.65 8.73±0.12

Ours + bCR 7.86 9.21±0.11

Our + bCR + Trip-att 7.68 9.05±0.08

The generated samples for the three methods are shown in
Figure 6.

(a) Our method without Triplet-attention and bCR

(b) Our method with bCR but without Triplet-attention



(c) Our method with bCR and Triplet-attention

Figure 6. Samples by different methods in our model
We also try to change the position of Triplet attention, and

the results are shown in Table 3. Our final method, i.e., put
the Triplet attention after the last layer, gains the best FID
score. Although the best IS is to put the Triplet attention after
every pixel shuffle layer, but it is too expensive for our device.

Table 3. The results of Triplet attention in different
positions of our generator

Positions of Triplet
attention

FID↓ IS↑

After first ffn layer 7.87 9.05±0.09

After every pixel
shuffle

8.6 9.10±0.07

After block 1 9.04 8.62±0.13

The last layer 7.68 9.05±0.08

5. Conclusion
We construct a hierarchical generator adversarial network

based on ViT on the task of unconditional image generation.
We have also introduce Triplet attention to the structure,
which ensures that the generated images are structured
properly. In addition, Consistency Regularization is also
shown to perform equally well on the ViT-based model.
Experiment results shown that the performance of the
proposed method beyond the TransGAN and some other
CNN-based GANs. However, our model structure is an ultra-

simple structure containing only three layers of transformer,
which still presents some challenges in handling higher
resolution tasks. We will then further try to gradually improve
the resolution of the generated images using some technical
means.
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