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Abstract: This paper proposes a time series data mining method based on graph neural network and Transformer
architecture, aiming to solve the challenges of modeling complex dependencies and dynamic features in multivariate time
series. By introducing an adaptive adjacency matrix, the model can dynamically learn the relationship between variables and
use a graph neural network to capture local dependency characteristics; combined with the multi-head attention mechanism
of Transformer, the global time dependency of time series is further modeled. The experiment selected two tasks, regression
and classification, for verification. The results on the power load forecasting and UCI human activity recognition datasets
show that the proposed method is superior to traditional statistical models, machine learning models, and existing deep
learning models in various indicators (such as MSE, MAE, accuracy, F1 value), which fully demonstrates its superior
performance. In addition, the ablation experiment analysis further verifies the contribution of each key module to the model
performance and demonstrates the model's ability to learn variable relationships and capture key information of time series
through visual analysis. The study shows that the proposed method not only has a strong time-series mining capability but
also has good generalization and robustness. In the future, we will further explore its application potential in label-scarce
scenarios and real-time tasks, and improve its applicability and deployment efficiency in a wider range of fields by

combining self-supervised learning and model lightweight technology.
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1. Introduction

Time series data is widely present in various fields such
as medicine, transportation, and finance, and is one of the
important objects of data mining research. By analyzing the
potential patterns and regularities in time series data, it can
help people predict future trends, identify abnormal events,
and perform tasks such as classification and clustering,
thereby providing support for scientific research, business
decisions, and public services [1]. However, time series data
is usually high-dimensional, dynamic, and complex, and may
contain problems such as noise and irregular sampling,
which brings many challenges to time series data mining [2].

Traditional time series data mining methods are mostly
based on statistics and machine learning techniques. These
methods rely on artificially constructed features and simple
linear models, and it is difficult to effectively capture
complex time dependencies and interactive characteristics
between multiple variables. With the development of deep
learning technology, models such as recurrent neural
networks (RNN) and convolutional neural networks (CNN)
have been widely used in time series data analysis, showing
powerful feature extraction capabilities [3]. However, these
models still have certain limitations in dealing with long-
term dependencies and complex multivariate dependencies.

In recent years, graph neural networks (GNNs) and
Transformer architectures have gradually become research

hotspots in the field of time series data mining due to their
excellent modeling capabilities and flexibility [4]. GNN can
capture the complex relationship between multiple variables
in time series data through graph structure, while the
Transformer architecture can effectively handle long-term
dependencies and global information in sequence data with
its self-attention mechanism. The combination of the two
provides a new idea for solving key problems in time series
data mining.

The time series data mining method based on graph
neural network and Transformer architecture can make full
use of the spatiotemporal structural characteristics of data
and effectively improve the accuracy and robustness of
prediction and classification. This study proposes a time
series data mining model that integrates graph neural
network and Transformer architecture. Through the synergy
of adaptive graph construction, time dependency modeling,
and attention mechanism [5], it effectively copes with the
complexity, diversity, and noise interference in time series
data.

This paper verifies the effectiveness and superiority of
the proposed method by conducting experiments on public
data sets in multiple fields. The research results show that
compared with traditional methods, the time series data
mining method based on graph neural network and
Transformer has significantly improved in prediction
accuracy, classification  performance, and  model



generalization ability, showing its wide application prospects
in time series analysis.

2. Method

In this study, in order to fully mine the multivariate
relationships and temporal characteristics in time series data,
a time series data mining method based on graph neural
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Figure 1. Network architecture diagram

First, for a given multivariate time series data, it can be

represented as X € RV™" | where N represents the
number of variables, T represents the length of the time step,
and F represents the feature dimension of each variable. To
model the complex relationship between variables, a
dynamic graph is constructed using a graph neural network,
where each variable is used as a node and the edge weights
between nodes are learned through an adaptive mechanism.
Specifically, by introducing a dynamic adjacency matrix

Ae RV , the relationship between variables can be
described, and its value is calculated by the characteristics of
the time series:

A, = softmax(@(h;, h,))

i2"7)
Where /,,h; s the initial feature representation of

nodes i and j, respectively, and @() represents a similarity

function (e.g., a function based on inner product or multi-
layer perceptron). The generation of an adaptive adjacency
matrix ensures that the model can capture the dynamic
relationship between variables.

After constructing the dynamic graph, the graph
convolutional network (GCN) is used to extract the
interaction features between variables. The graph
convolution operation can be expressed as:

network and Transformer architecture is proposed. This
method is mainly divided into two stages: first, the complex
dependencies of multivariate time series are modeled using a
graph neural network, and then the global temporal
dependencies in the sequence are captured by the
Transformer to complete the feature learning of time series
and the realization of task objectives. The model architecture
is shown in Figure 1.

H(l+1) — O(AH(I)W(I))

Where H " is the input feature representation of the 1-th

layer of graph convolution, W s the learned weight

matrix, and 0() is the activation function (such as ReLU).
After multiple layers of graph convolution, the fused

representation H " € R™" of each variable is obtained,
where E is the final feature dimension.

After completing the modeling of the relationship
between variables, the extracted features are sent to the
Transformer module for learning time series features. In
order to adapt to the time series input, the output of the graph
convolution is first time-embedded and expanded to obtain

Z € R"™""  Then, positional encoding is introduced to
represent the position of the time step. The positional
encoding calculation formula is:

PE(t,2i) = sin(1 )

t
00002i/F'

PE(t,2i +1) = cos( )

t
100007

Where t represents the time step and i represents the
index of the feature dimension. By adding position encoding,
the model can better capture time information.

The Transformer module captures the global dependency
of the time series through a multi-head self-attention
mechanism and a feedforward network. The calculation
formula of the self-attention mechanism is:

T
Attention(Q,K,V) = soft maX(QL)V

A

O,K.,V s the query matrix, key matrix and value
matrix, which are obtained by linear transformation of input
features, and d t
mechanism, which is used to balance the numerical scale of
the dot product. The calculation of multi-head attention is
performed in parallel by multiple attention heads. The
specific formula is:

MultiHead(X) = Concat(head,,...,head, )W °

is the scaling factor of the attention

The calculation of each attention head follows the above
single-head attention formula.



In the encoder structure of Transformer, the output of
multi-head attention and feedforward network is fused
through residual connection and layer normalization, and
finally forms the global feature representation of time series.
Combining the local features of graph convolution and the
global features of Transformer, the model can show strong
prediction and classification capabilities in time series
mining.

The training goal of the model is to minimize the task-
related loss function. This paper conducts two tasks. First,
the target loss function of the prediction task is given:

Lpred Z_Z(yt _y't )
T3
The classification task uses cross entropy loss :

C
Lclass = _Z yi log(y'j )
i=1

are the true value and predicted value

Y, and '

respectively, and C is the number of categories.

3. Experiment
3.1 Datasets

In this study, in order to verify the effectiveness and
versatility of the proposed algorithm, two representative
datasets were selected for experiments. The first dataset is
the UCI Human Activity Recognition Dataset [6], which
contains time series data of various human activities
collected by the accelerometer and gyroscope of a
smartphone. The dataset covers 6 activity categories,
including walking, going up and down stairs, sitting,
standing, and lying down. Each record contains time series
features (such as acceleration and angular velocity) and
corresponding activity labels. This dataset is widely used in
classification tasks and can effectively verify the
performance of the model in time series classification.

The second dataset is the Electricity Load Forecasting
Dataset, which contains electricity consumption in multiple
regions over a period of time, including date, time, electricity
usage, and other relevant environmental variables (such as
temperature, humidity, etc.). This dataset is widely used in
time series forecasting tasks, aiming to predict future
electricity demand based on historical electricity usage data.
Electricity load data has significant time dependence and
multivariate relationships and is an important benchmark
dataset for verifying the model's ability to handle complex
dependency characteristics in forecasting tasks. Through
experimental analysis of these two datasets, the applicability
and performance of the proposed algorithm in time series
classification and forecasting tasks can be comprehensively
evaluated.

3.2 Experimental Results

In order to evaluate the performance of the proposed
algorithm in the time series forecasting task, this study
selected the power load forecasting dataset and conducted
comparative experiments with the current mainstream
regression models. The comparative models include the
classic autoregressive integrated moving average model
(ARIMA) [7] based on statistics, random forest regression
(RF) [8]based on machine learning, support vector
regression (SVR) [9], and deep learning models such as long
short-term memory network (LSTM) [10]and time series
transformer [11] based on attention mechanism. The
experimental results are shown in Table 1.

Table 1. Experimental results

Model MAE MSE R?
ARIMA 34.56 1456.34 0.752
RF 28.32 1298.45 0.812
SVR 29.45 1345.67 0.795
LSTM 24.12 1154.78 0.845
Time 22.67 1098.56 0.862
Transformer

Ours 18.45 984.23 0.889

From the experimental results, it can be seen that the
proposed method (Ours) outperforms the comparison model
in all evaluation indicators. Specifically, in terms of MAE
and MSE, the proposed method reached 18.45 and 984.23,
respectively, which is significantly lower than the traditional
statistical method ARIMA by 46.6% and 32.4%. Compared
with the deep learning models LSTM and Time Transformer,
the MSE of our method is reduced by 14.8% and 10.4%, and
the MAE is reduced by 23.5% and 18.6%, respectively,
showing the obvious advantage of the proposed method in
reducing the prediction error. In addition, from the
perspective of R? value, the proposed method reached 0.889,
which is further improved compared with 0.862 of Time
Transformer, indicating that the proposed method has higher
accuracy and reliability when fitting complex time series
data.

These results show that this study successfully captured
the local variable relationship and global time dependency
characteristics in the time series by combining the graph
neural network and the Transformer architecture, effectively
enhancing the model's predictive ability. Compared with
ARIMA and machine learning models (such as RF and SVR),
this method automatically learns data features through a deep
learning structure, reducing the limitations of manual feature
engineering; compared with LSTM and Time Transformer,
this method shows stronger modeling capabilities and
generalization performance when dealing with complex
dependencies in multivariate time series.

Secondly, we not only conducted experiments on
regression tasks, but also further verified the effectiveness of
the proposed method on classification tasks. The UCI human
activity recognition dataset was selected as the experimental



object. This dataset contains 6 types of human activity labels,
aiming to evaluate the applicability of the model to time
series classification tasks. The comparison models include
support vector machine (SVM), random forest (RF),
convolutional neural network (CNN), long short-term
memory network (LSTM), and Transformer-based
classification model. By comparing and analyzing the
classification accuracy (Accuracy), precision (Precision),
recall (Recall), and F1 value of these models under the same
conditions, the performance advantages of the model
proposed in this paper in time series classification tasks can
be fully demonstrated. The experimental results are shown in
Table 2.

In addition, this paper also conducted ablation
experiments using classification tasks to verify the impact of
different model components on the overall performance. By
gradually removing key modules, such as the neural network
part, the adaptive adjacency matrix generation module, and
the Transformer multi-head attention mechanism, the
contribution of each part to the model classification ability is
evaluated. The ablation experiment can further reveal the
core effectiveness of this method and provide an important
reference for model design and optimization. The
experimental results are shown in Table 3.

Table 3. Classification experimental results

Model ACC Precisio Recall F1
Table 2. Classification experimental results n
Model ACC Precisio Recall F1 With out GNN | 0.8912 | 0.8745 0.8698 0.87
n 21
SVM 0.8145 | 0.7923 0.7867 | 0.789 Without 0.9045 | 0.8923 0.8878 | 0.89
5 Adaptive 00
RF 0.8432 0.8245 0.8189 | 0.821 Adjacency
7 Matrix
CNN 0.8678 0.8512 0.8456 | 0.848 Without 0.9134 | 0.9021 0.8984 0.90
4 Multi-head 02
LSTM 0.8845 0.8723 0.8689 | 0.870 Attention  in
6 Transformer
Transformer 0.8967 0.8845 0.8812 | 0.882 Ours 0.9212 | 09134 0.9089 0.91
8 11
Ours 0.9212 0.9134 0.9089 | 0.911
1

From the experimental results, it can be seen that the
proposed method (Ours) shows obvious advantages in
classification tasks and outperforms other comparison
models in all evaluation indicators. Specifically, the accuracy
(ACC) of this method reaches 0.9212, which is 2.46% and
3.68% higher than the Transformer-based model (0.8967)
and LSTM (0.8845), respectively. In addition, the precision
(Precision) and recall (Recall) of this method are 0.9134 and
0.9089, respectively, which shows that the model can better
balance the classification performance of minority and
majority categories. In contrast, traditional machine learning
models (such as SVM and RF) perform relatively poorly
because they cannot fully capture the global dependencies
and relationships between variables of time series. From the
perspective of F1 wvalue, the proposed method reached
0.9111, which is 2.83% higher than Transformer and 4.05%
higher than LSTM. This further verifies the overall
advantage of this method in time series classification tasks.
Thanks to the ability of combining graph neural networks to
capture complex relationships between variables and
Transformer to model global time dependencies, this method
shows excellent classification accuracy and robustness in
multi-category classification scenarios. Experimental results
show that this method can not only effectively handle time
series classification tasks, but also surpass the performance
of existing mainstream models, providing a better solution
for time series data mining.

From the ablation experiment results, it can be seen that
gradually removing the key modules of the model has a
significant impact on the overall performance. After
removing the graph neural network (GNN), the accuracy
(ACC) of the model dropped to 0.8912 and the F1 value
dropped to 0.8721, indicating that GNN plays an important
role in extracting complex dependencies between multiple
variables, and the absence of this module will lead to a
significant decrease in classification ability. In addition, after
removing the adaptive adjacency matrix generation module,
although the performance is slightly improved to an accuracy
of 0.9045, there is still a certain gap compared to the
complete model, indicating that dynamically constructing a
variable relationship graph can significantly improve the
modeling effect of the relationship between variables.

When the multi-head attention mechanism of
Transformer is removed, the accuracy of the model further
drops to 0.9134 and the F1 value drops to 0.9002, which
shows that the multi-head attention mechanism plays a key
role in capturing the global dependency characteristics of
time series. In contrast, the complete model (Ours) performs
best in all indicators, with an ACC of 0.9212 and an F1 value
of 0.9111, which verifies that the method in this paper can
make better use of the structural characteristics of time series
data when combining graph neural networks with
Transformer architectures, and show the best classification
performance and robustness.



Furthermore, this paper gives the multi-head attention
weights of the Transformer, and the experimental results are
shown in Figure 2.
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Figure 2. Transformer Multi-Head Attention Weight

As can be seen from the figure, the distribution of the
Transformer model's multi-head attention weights between
time steps and attention heads is significantly different,
which reflects the model's focus when processing features at
different time steps. Some time steps (such as step 8) have
higher weights for some attention heads (such as head 6),
which may indicate that these time steps contain important
feature information related to the task, while the distribution
of attention weights at other time steps is relatively scattered,
indicating that the model may pay more attention to global
features at these time steps.

In general, the introduction of the multi-head attention
mechanism enables the model to capture the complex
interactions between different time steps and features in the
time series and assign more weights to key positions. This
flexible weight distribution not only improves the
representation ability of the model but also verifies the
effectiveness of the multi-head attention mechanism in time

series data modeling, providing strong support for
subsequent classification or prediction tasks. The
experimental results clearly demonstrate the model's

comprehensive attention to global and local features, laying
the foundation for performance improvement.

Similarly, this paper also gives the heat map of the
adaptive adjacency matrix. The experimental results are
shown in Figure 3.

As can be seen from the figure, the adaptive adjacency
matrix effectively captures the dynamic relationship between
variables. The values of the diagonal are all 1, indicating that
the relationship strength between each variable and itself is
the strongest, which is logical. In addition, the distribution of
weight values between different variables is obviously
different. For example, the relationship strength between
variable 0 and variable 2 is high (weight is 0.78), indicating
that they may have strong correlation or interaction
characteristics, while the weight between variable 3 and

Attention Weight

variable 5 is low (only 0.25), indicating that their
dependence is weak.
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Figure 3. Adaptive Adjacency Matrix Heatmap

Overall, the heat map reflects the model's ability to
capture complex dependencies among multiple variables.
The asymmetric distribution of weight values indicates
that the model can adaptively adjust the weights between
variables according to the dynamic characteristics of the time
series, which provides important support for subsequent
feature extraction and task prediction. The experimental
results further verify the importance and effectiveness of the
adaptive adjacency matrix in multivariate time series
modeling.

4. Conclusion

This paper proposes a time series data mining method
based on graph neural network and Transformer architecture.
By combining the local wvariable relationship modeling
capability of graph neural network and the global time
dependency capture capability of Transformer, it effectively
solves the modeling problem of complex dependencies and
dynamic features in multivariate time series. Experimental
results on regression and classification tasks show that the
proposed method outperforms traditional methods and
existing deep learning models in multiple evaluation
indicators, verifying its superiority and applicability in time
series data mining.

Through ablation experiments, the role of each module in
the model is analyzed, and the key contribution of the
reasonable design of adaptive adjacency matrix, graph neural
network, and multi-head attention mechanism to the model
performance is further proved. The visual experimental
results show the excellent ability of the model in capturing
the relationship between variables and the key positions of
time series and intuitively reflect the generalization and
robustness of this method in different scenarios. These



research results not only expand the technical boundaries of
time series data mining but also provide effective solutions
to complex problems in practical applications.

Future research can further explore the adaptability of
this method in larger data sets and more practical scenarios,
such as weather forecasting, financial market analysis, and
medical data diagnosis. At the same time, combining
unsupervised learning, self-supervised learning, and other
methods will help enhance the performance of the model in
scenarios where labels are scarce. In addition, further
optimizing the computational efficiency and memory usage
of the model and improving its deployment capabilities in
edge devices and real-time tasks are also important directions
worthy of attention in the future.
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