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Abstract: In data stream computing, distributed scheduling is a key technology to improve system performance and resource
utilization. Traditional static and rule-based scheduling methods are difficult to adapt to task fluctuations and resource changes in
dynamic environments, often resulting in high task delays and resource waste. To solve this problem, this paper proposes a
distributed scheduling algorithm based on global optimization, which aims to achieve efficient task allocation and resource
utilization by balancing task delay and load balancing. By introducing real data sets and multiple experimental scenarios, this
paper conducts a comprehensive evaluation of the algorithm. The experimental results show that the proposed algorithm shows
significant advantages under low, medium, and high loads and node failures, especially under high loads and high failure rates.
The improvement in task delay and load balancing is particularly obvious. In addition, this paper designs robustness experiments
for task bursts and node failures to verify the algorithm's adaptability and resource reallocation efficiency in dynamic scenarios.
Although the algorithm performs well under various conditions, there is still room for further improvement. Future work will
explore its adaptive ability in ultra-high loads and heterogeneous computing environments. This study provides new optimization
ideas for distributed scheduling in data stream computing, which will help promote the efficient and intelligent development of
distributed systems.
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1. Introduction
In recent years, distributed computing systems have

occupied an important position in the fields of big data
processing, artificial intelligence, and real-time analysis [1]. As
a key branch, data stream computing has received more and
more attention. Compared with batch processing systems, data
stream computing emphasizes real-time processing and rapid
response to data. It plays a vital role in financial risk control,
IoT data analysis, and online recommendation systems.
However, the efficient operation of data stream computing does
not only rely on the support of the underlying hardware but
also requires a reasonable scheduling strategy to maximize
resource utilization and improve the overall performance of the
system [2].

In data stream computing, distributed scheduling is a
crucial component that determines how computing tasks are
allocated to multiple nodes and how to achieve efficient
resource allocation in a dynamic environment [3]. Due to the
dynamic nature of data streams and the complexity of
distributed environments, scheduling problems usually face
multiple challenges, such as task dependencies, unbalanced
load distribution, and resource competition [4]. If these
problems are not effectively solved, it will not only lead to a
waste of computing resources but also increase the delay of
data processing, thereby weakening the real-time and efficiency
of data stream computing [5].

Current distributed scheduling methods mainly include
static scheduling and dynamic scheduling. Static scheduling

plans resource allocation schemes before the task starts, which
is usually suitable for scenarios with clear task dependencies
and fixed data scales. However, in real-time data stream
processing, the data scale and pattern may change over time, so
static scheduling is difficult to adapt to dynamic environments
[6]. Dynamic scheduling can be adjusted according to real-time
resources and task status and has greater flexibility and
adaptability, but its complexity and computational overhead are
high. Therefore, how to find a balance between flexibility and
performance overhead is an important research direction for
distributed scheduling optimization in data stream computing.

In addition, with the continuous growth of big data scales
and the diversification of application scenarios, the demand for
distributed scheduling is also evolving. For example, in a
multi-tenant environment, when multiple users share the same
computing platform, the scheduler needs to take into account
resource fairness and performance optimization. In edge
computing scenarios, the scheduler needs to minimize data
transmission delays under the condition of uneven performance
of computing nodes. These new requirements have put forward
higher requirements for distributed scheduling optimization and
provided researchers with rich research topics [7].

The optimization of distributed scheduling is not only of
academic significance but also has a profound impact on
practical applications in the industry. Taking Internet
companies as an example, their recommendation systems and
advertising delivery systems often rely on data stream
computing platforms to process real-time user behavior data.
Efficient distributed scheduling methods can significantly



improve the response speed and accuracy of these systems,
thereby bringing direct economic benefits. At the same time, in
fields such as the Internet of Things and intelligent
transportation, the requirements for real-time and reliability are
more stringent, and optimizing scheduling strategies can also
improve the system's operating efficiency and user experience.

In summary, distributed scheduling optimization in data
flow computing is not only a hot issue in distributed system
research but also a key technology to promote the development
of related applications. By designing efficient scheduling
algorithms for different scenarios and requirements, it can not
only improve the processing power of data flow computing but
also provide reliable support for more complex real-time
computing tasks. This research not only helps to promote the
theoretical development of distributed computing technology
but also provides practical solutions for industrial practice.

2. Related Work
Distributed scheduling in data stream computing has

attracted substantial attention due to its critical role in real-time
processing and task allocation across dynamic environments.
Various studies have focused on optimizing task delays,
resource utilization, and load balancing. Liang et al. [8]
proposed an automated data mining framework using
autoencoders for feature extraction and dimensionality
reduction, which can optimize task scheduling by reducing
overhead and task dependencies. Reinforcement learning-based
methods, such as the Q-learning approach by Huang et al. [9],
have also proven effective in handling dynamic scheduling
scenarios by adapting to changes in workload and resource
availability. Gao et al. [10] introduced a hypergraph-enhanced
model for sequential prediction that efficiently captures task
relationships, offering potential improvements in scheduling
tasks with complex interdependencies.

Adaptive scheduling mechanisms have benefited from
advances in deep learning and knowledge distillation
techniques. Wang et al. [11] developed feature alignment-based
knowledge distillation for large model compression, enabling
efficient decision-making even under resource constraints,
while Hu et al. [12] demonstrated how few-shot learning with
adaptive weight masking using GANs enhances the robustness
of scheduling systems in scenarios with sparse or rapidly
changing data. Mei et al. [13] proposed collaborative
hypergraph networks for improved decision-making, which can
be applied to load balancing by managing task dependencies
among distributed nodes. The synergy between neural
architecture search and scheduling optimization was explored
by Yan et al. [14], highlighting the benefits of dynamic model
selection to achieve better task allocation in distributed systems.

Efforts have also been made to address load balancing and
task distribution in dynamic environments. Gao et al. [15]
studied multi-level attention mechanisms and contrastive
learning, demonstrating the ability to prioritize and allocate
tasks efficiently in high-dimensional spaces. Meanwhile, Liu et
al. [16] analyzed optimal prediction algorithms for dynamic

systems and disruptions, providing valuable insights into
adaptive scheduling under external uncertainties. Liang et al.
[17] investigated deep learning techniques for contextual
analysis in real-time, supporting dynamic task reallocation in
environments with varying resource demands. Collaborative
optimization methods have also been explored by Fei et al. [18],
where privacy-preserving mechanisms in distributed
environments showed promise for improving secure task
scheduling without compromising efficiency.

Robustness and failure adaptation are essential in distributed
scheduling, particularly when systems face high failure rates or
task bursts. Liu et al. [19] investigated few-shot learning and
calibration methods, which can improve resource allocation
when dealing with uncertainty. In the same context, Hu et al.
[20] proposed LoRA fine-tuning for large language models,
which can be leveraged to make real-time adjustments in task
scheduling based on dynamic resource constraints. Finally,
Wang et al. [21] explored machine learning-based comparative
studies on credit default prediction, which, while focused on
finance, presents transferable methodologies for evaluating
task-critical events and prioritizing resource allocation in
distributed systems.

3. Method
In the distributed scheduling optimization in data flow

computing, this paper proposes a scheduling method based on
mathematical optimization, which aims to minimize task delay
and system load imbalance, while meeting the resource
constraints and task priority requirements of distributed
computing. The optimization framework is shown in Figure 1.

Figure 1. Distributed Iterative Optimization Framework.

Assume that there are M tasks and N nodes in the system,
and the allocation relationship between task jT and node

iN is represented by binary decision variable jix , :
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Here, jm represents the resources required by task jT ,

and ir represents the resource capacity of node iN . The
optimization objective function is to minimize the weighted
sum of task delay and load imbalance:
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Among them, jd is the data size of task jT , )( jTMC is

the computing power of the node assigned to task jT , il
represents the current load of node iN , and l is the average
load of all nodes.

To simplify the solution, we use the linear relaxation
method to transform the original integer programming problem
into a continuous variable optimization problem. The jix , in
the constraint condition is allowed to take values between

]1,0[ , and the gradient descent method is used for iterative
optimization. The gradient update formula is as follows:

1. Gradient update for jix , :
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2. Gradient updates for load balancing:
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In order to further improve the computational efficiency,
this paper introduces a distributed solution strategy in the
optimization process. Specifically, the global optimization
problem is decomposed into multiple independent sub-
problems, and each node only needs to process its assigned
tasks and the current resource status, thereby greatly reducing
the computational complexity of the global problem. Each node
completes the preliminary optimization of task allocation
locally, and exchanges necessary information such as the
node's remaining resource capacity, current task load, and the
global average load value l through a lightweight

communication mechanism. The synchronization of this
information usually adopts asynchronous communication to
reduce the synchronization waiting time in the system, thereby
improving the overall computational efficiency.

4. Experiment
4.1 Datasets

In the experimental part of this paper, a real dataset Google
Cluster Trace was selected. This is a public dataset widely used
in distributed system research. It was released by Google in
2011 and contains detailed records of task scheduling and
resource usage in Google data centers over a period of time.
This dataset provides data on real distributed computing tasks
and their execution environment and is an ideal choice for
studying distributed scheduling algorithms.

The original data of the Google Cluster Trace dataset spans
29 days and records the execution of more than 120 million
tasks. The dataset contains rich metadata, such as the
submission time, start time, execution time, required resources
(CPU, memory, etc.) of the task, as well as task priority,
category, and scheduling status. This information can provide
real input for the scheduling algorithm and reflect the dynamics
of task characteristics and resource requirements in the actual
environment. The dataset also contains status data of more than
10,000 computing nodes, providing real resource constraint
information for scheduling optimization in a distributed
environment.

Another notable feature of this dataset is the heterogeneity
of its tasks and resources. The resource requirements, execution
time, and priority of tasks vary significantly, and the computing
power and resource capacity of nodes are also different. This
heterogeneity makes the scheduling problem more complex,
but also closer to actual application scenarios. For example, the
coexistence of short-term and long-term tasks puts forward the
dual requirements of high real-time performance and efficient
resource utilization on the scheduler. These characteristics
provide a challenging but realistic experimental environment
for evaluating the performance of scheduling algorithms.

In order to facilitate analysis, this paper preprocesses the
original data set. For example, data within a specific time
window is selected as the sample of the experiment, and tasks
are classified according to priority and resource requirements,
so as to more accurately evaluate the performance of the
scheduling algorithm in different scenarios. At the same time,
since some task and node information may be missing in the
data set, this paper also uses interpolation and missing data
completion technology to ensure the integrity of the data and
the reliability of the experimental results. These processing
steps enable the experimental data to better reflect the
performance of the scheduling algorithm in actual scenarios.

4.2 Experimental setup
In the experimental setting, in order to comprehensively

evaluate the performance of the proposed distributed
scheduling optimization method, this paper designed multiple
experimental scenarios to quantitatively analyze key indicators
such as latency, load balancing, and resource utilization. The



experimental environment simulates a typical distributed data
flow computing framework and adopts a multi-node
virtualization deployment scheme to control experimental
variables while maintaining a high degree of similarity with the
actual distributed system.

The experiment was conducted on a cluster of 20 virtual
computing nodes, each of which was configured with different
computing resources and network bandwidth to simulate the
resource heterogeneity in the real environment. Each node was
configured with a different number of CPU cores (ranging from
2 to 16 cores) and memory capacity (ranging from 4GB to
64GB). Random perturbations were also introduced into the
network transmission delay between nodes, ranging from 10ms
to 100ms, to reflect the network fluctuations in the actual
system. The task flow dynamic generation module used in the
experiment generates task flows based on the characteristics of
the actual scheduling scenario, including multiple parameters
such as task size, resource requirements, and priority.

The scheduling algorithm is initialized with fixed parameter
settings, including the weight ratio 11：：  of delay and
load balancing, to focus on both task execution efficiency and
system stability. To further verify the robustness of the
algorithm, the experiment also evaluates the adaptability of the
algorithm under different optimization objectives by adjusting
the weight ratio. In addition, in order to test the performance of
the scheduling algorithm under different load conditions, the
experiment designed three load scenarios: low load (total task
demand is less than 50% of the total system resources),
medium load (task demand matches system resources) and high
load (total task demand exceeds system resources by more than
20%). These three scenarios reflect the pressure and
optimization requirements of different workloads on the
scheduling system.

The experimental process is divided into multiple rounds of
operation, and 1000 to 5000 tasks are generated in each round
of operation. The system injects tasks into the scheduler for
allocation at fixed time intervals. At the same time, in order to
ensure the fairness of the experiment, all comparison
algorithms are run in the same task flow and node environment.
The comparison algorithms include classic static scheduling
algorithms, rule-based dynamic scheduling algorithms, and
other optimization algorithms (such as scheduling methods
based on linear programming). The experiment recorded the
start time, completion time, and allocated node resources of
each task and calculated the average delay, maximum delay,
node load standard deviation, and overall resource utilization of
the task based on these data.

The experimental platform is built based on Docker
containers and Kubernetes clusters, and the scheduling
algorithm is implemented in the form of plug-ins to unify the
operating environment. All experiments are run on a Linux
system. The hardware environment is a high-performance
server with a 256-core CPU and 512GB memory to simulate
the virtualization environment of distributed nodes. The
experimental results are averaged through multiple runs to
eliminate the interference of random factors on the results. This
experimental setting can not only accurately reflect the actual

performance of the algorithm but also provide strong data
support for analyzing its advantages and disadvantages.

4.3 Experimental result
In the experiment, this paper mainly evaluates the

performance of the proposed scheduling algorithm in two key
indicators, task delay, and load balancing, and compares it with
the traditional scheduling algorithm. The experimental results
show that the proposed optimization method shows lower task
delay and better load balancing in most scenarios, especially in
high-load environments, where its advantages are more
significant.

Task delay is measured by the average task completion time,
which indicates the time interval from task submission to
completion. Load balancing is quantified by calculating the
standard deviation of node load. The smaller the standard
deviation, the more uniform the load distribution. The
following table shows the experimental results of the proposed
algorithm and the two comparison algorithms in different load
scenarios (low load, medium load, and high load). The
experimental results are shown in Table 1, Table 2, and Table 3:

Table 1. Experimental results under low load scenario
Algorithm Type Average task

latency (ms)
Load standard
deviation

Ours 125 3.4
Static Scheduling Algorithm 180 7.8
Dynamic rule algorithm 155 5.2

The experimental results in low-load scenarios show that
the proposed algorithm has significant advantages in both task
delay and load balancing. Among them, the average task delay
is 125 milliseconds, which is about 30% lower than the static
scheduling algorithm (180 milliseconds) and 19% lower than
the dynamic rule algorithm (155 milliseconds). This result
shows that the proposed algorithm can allocate tasks more
efficiently and reduce the waiting time for tasks in an
environment with relatively sufficient resources. This
optimization is mainly due to the global optimization ability of
the algorithm in task allocation, which enables key tasks to be
processed first, thereby improving the overall processing
efficiency.

In terms of load balancing, the load standard deviation of
the proposed algorithm is 3.4, which is about 56% lower than
the static scheduling algorithm (7.8) and about 35% lower than
the dynamic rule algorithm (5.2). The reduction in the load
standard deviation indicates that the resource utilization
between nodes is more even, and the system can avoid
excessive concentration or idleness of resources when
processing tasks. The static scheduling algorithm has a large
limitation in resource allocation and significantly poor load
balancing due to the lack of dynamic adjustment capability;
while the dynamic rule algorithm has a certain adjustment
capability, its effect is still inferior to the proposed method due
to the failure to fully consider the global load distribution.

Overall, the proposed algorithm shows a high optimization
potential in low-load scenarios. On the one hand, the low-load
scenario provides the algorithm with more room for resource
allocation, allowing the algorithm to give full play to its



advantages in global optimization; on the other hand, the task
delay and load balancing problems in low-load scenarios are
mainly concentrated on the rationality of the scheduling
strategy. The proposed algorithm achieves better scheduling
effects by accurately modeling task priorities and node states.
This shows that the proposed method not only performs well in
dealing with complex task environments but also maintains
high efficiency and stability in relatively simple scenarios.

Table 2. Experimental results under medium load scenario
Algorithm Type Average task

latency (ms)
Load standard
deviation

Ours 235 6.7
Static Scheduling Algorithm 290 12.4
Dynamic rule algorithm 260 8.9

The experimental results in the medium-load scenario show
that the proposed algorithm still has significant advantages in
task delay and load balancing. The average task delay is 235
milliseconds, which is about 19% lower than the static
scheduling algorithm (290 milliseconds) and about 10% lower
than the dynamic rule algorithm (260 milliseconds). The load
standard deviation is 6.7, which is about 46% lower than the
static scheduling algorithm (12.4) and about 25% lower than
the dynamic rule algorithm (8.9). This result shows that the
proposed algorithm achieves a more efficient balance in
resource utilization and task allocation, especially in the
medium-load scenario where resources tend to be tight, which
can effectively avoid the uneven allocation of node resources
while maintaining low task delay. This reflects the good
adaptability and robustness of the algorithm in a dynamic
environment.

Table 3. Experimental results under high-load scenarios
Algorithm Type Average task

latency (ms)
Load standard
deviation

Ours 400 9.2
Static Scheduling Algorithm 500 18.3
Dynamic rule algorithm 460 14.5

The experimental results in high-load scenarios show that
the proposed algorithm still has great advantages in task delay
and load balancing. The average task delay is 400 milliseconds,
which is 20% lower than the static scheduling algorithm (500
milliseconds) and about 13% lower than the dynamic rule
algorithm (460 milliseconds). The load standard deviation is
9.2, which is about 50% lower than the static scheduling
algorithm (18.3) and about 37% lower than the dynamic rule
algorithm (14.5). These results show that in high-load scenarios
with severe resource shortages, the proposed algorithm can
effectively alleviate the uneven distribution of resources
between nodes while optimizing the completion time of tasks
as much as possible. This performance is due to the algorithm's
dynamic adjustment ability in global optimization, which
enables it to use limited resources more efficiently while
balancing the urgency of tasks and the carrying capacity of
nodes, showing strong robustness and practicality.

In addition, in distributed scheduling scenarios, the
dynamic changes of tasks and the random fluctuations of
system resources will affect the performance of the scheduling
algorithm. Therefore, this paper also tests the robustness of the

scheduling algorithm in different dynamic environments to
verify its adaptability to task bursts and node failures.

First, we present a line graph of the average latency for the
task burst scenario, as shown in Figure 2, which shows the task
latency of the three algorithms under different burst task ratios.

Figure 2. Average Task Latency under Burst Scenarios

Figure 2 shows the average task delay performance of the
three algorithms under different burst task ratios. As the burst
task ratio increases, the task delay of all algorithms increases
significantly. However, the algorithm proposed in this paper
always maintains the lowest delay, indicating that it still has
excellent task-processing capabilities when the burst load
increases. In contrast, the static scheduling algorithm has the
fastest delay growth and the highest delay value, indicating that
it has poor adaptability to burst tasks; the dynamic rule
algorithm performs slightly better than the static scheduling,
but still worse than the proposed algorithm. This shows that the
proposed algorithm has significant advantages in dealing with
burst task loads.

Figure 3. Task Reassignment Time under Node Failure
Scenarios

Figure 3 shows the task reallocation time of the three
algorithms under different node failure ratios. As the node
failure ratio increases, the reallocation time of all algorithms
increases, but the proposed algorithm always maintains the
lowest reallocation time, indicating that it is more efficient in



dealing with node failures. The static scheduling algorithm has
the highest reallocation time, especially when 30% of the nodes
fail, which shows that it has poor adaptability in dynamic
environments. The dynamic rule algorithm is slightly better
than the static scheduling, but still worse than the proposed
algorithm. This shows that the proposed algorithm has better
robustness and resource reallocation efficiency in node failure
scenarios.

Figure 4. Resource Utilization under Node Failure Scenarios

Figure 4 shows the resource utilization performance of
the three algorithms under different node failure ratios. As the
node failure ratio increases, the proposed algorithm always
maintains a high level of resource utilization, indicating that it
can effectively reallocate resources when a node fails, thereby
maintaining the stability of the system. The static scheduling
algorithm has the lowest resource utilization, especially when
30% of the nodes fail, which shows that its resource allocation
ability in a dynamic environment is limited; the resource
utilization of the dynamic rule algorithm is slightly better than
the static scheduling, but still lower than the proposed
algorithm. This shows that the proposed algorithm has better
resource management capabilities in node failure scenarios and
can use the remaining resources more efficiently under adverse
conditions.

5. Conclusion
This paper proposes a distributed scheduling optimization

method for data flow computing and experimentally verifies
the advantages of this method in key performance indicators
such as task delay, load balancing, and resource utilization.
Compared with traditional static scheduling and dynamic rule
scheduling algorithms, the proposed algorithm shows better
adaptability and robustness under various load and node failure
conditions, especially in dynamic environments with high load
and high node failure ratios, which significantly improves the
stability and resource utilization efficiency of the system.
These experimental results show that the proposed optimization
method can effectively cope with complex distributed task
scheduling requirements and provide a more efficient solution
for data flow computing applications.

However, although the scheduling algorithm in this paper
performs well in many scenarios, the system performance will

still be affected under extremely high loads or a large number
of node failures. This indicates that future research can further
optimize the algorithm to improve its performance under ultra-
high load and extreme failure environments. In addition, the
node resources and task requirements assumed in this study are
relatively fixed, while the dynamic changes of resources and
the uncertainty of task requirements in the actual environment
may have a greater impact on the scheduling results. Therefore,
future work can explore how to achieve adaptive scheduling in
more dynamic scenarios to further improve the practicality and
adaptability of the algorithm.

Looking ahead, as the application areas of data flow
computing and distributed systems continue to expand, the
intelligence and self-learning capabilities of scheduling
algorithms will become a research focus. The introduction of
technologies such as machine learning and reinforcement
learning will enable the scheduling system to autonomously
learn historical data and make real-time adjustments, which
will help improve scheduling efficiency and response speed. In
addition, with the popularization of edge computing and IoT
devices, the application of scheduling algorithms in
heterogeneous networks and edge nodes will also be an
important research direction. By continuously improving
scheduling algorithms, we will provide stronger support for
data-intensive applications and promote the widespread
application of distributed systems in all walks of life.
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