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Abstract:With the widespread application of electronic health records (EHR), data-driven disease prediction has become an
important research direction in the medical field. This study proposes a disease prediction model based on long short-term
memory network (LSTM) to analyze time series data in electronic health records and predict patients' future disease risks. As a
deep learning model with long-term dependency modeling capabilities, LSTM can effectively process complex time series
features in electronic health data. We used the public MIMIC-III database, which contains a large number of patients' diagnosis,
treatment and physiological data, and built a disease prediction system through data preprocessing, feature selection and model
training. Experimental results show that LSTM shows superior performance in evaluation indicators such as mean square error
(MSE), root mean square error (RMSE) and mean absolute error (MAE) compared with traditional machine learning models
such as support vector machine (SVM), random forest (RF) and multi-layer perceptron (MLP). By further optimizing the
LSTM model, the accuracy of disease prediction can be improved, providing clinicians with a scientific and reliable auxiliary
decision-making tool.
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1. Introduction
With the continuous advancement of informatization in

the medical field, electronic health records (EHR) have
become an indispensable part of the modern medical system.
EHR contains a large amount of patient health data,
including diagnostic records, treatment history, laboratory
test results, imaging data, drug prescriptions, etc., which
provide rich resources for disease prediction, personalized
treatment and health management. With the rapid increase in
the amount of data, traditional statistical methods and
machine learning techniques often face problems such as
difficulty in extracting data features and insufficient
modeling of long-term dependencies when processing these
complex and time-series health data. Therefore, how to
effectively use the time series data in electronic health
records for disease prediction has become a key research
topic[1].

As a special recurrent neural network (RNN), the long
short-term memory network (LSTM) has been widely used
in various fields due to its unique advantages in time series
data processing, especially in natural language processing
and time series prediction. It has achieved remarkable results.
LSTM can effectively capture long-term dependencies in
data through its gating mechanism (such as input gate, forget
gate and output gate), solving the problem of gradient
vanishing or exploding in traditional RNN in long sequence
data. Therefore, when processing time series data in
electronic health records, LSTM can better learn the
dynamic changes of patients' health status and make early
predictions of diseases based on historical health data[2].

The data in electronic health records usually include
patients' historical diagnosis, treatment process, medication
records, examination results, etc., which are usually highly
time-series[3-4]. LSTM can effectively encode these time
series data through its memory units, capture long-term
dependencies, and help the model understand the patient's
medical history and health change trends. Compared with
traditional machine learning methods, LSTM can
automatically learn potential features in data through
end-to-end training without too much manual feature
engineering. Especially when facing complex health data,
LSTM can gradually extract useful information through its
deep network structure, so that the model can have strong
adaptability and accuracy when predicting diseases.

In addition, LSTM can process multi-dimensional and
multi-type input data to adapt to the diverse health data of
different patients. In electronic health records, the medical
records of different patients vary greatly and may involve
different diseases, treatment methods, and medication
regimens[5]. The LSTM network can learn various complex
patterns in patients' health data through training and identify
potential disease risk factors. In the process of disease
prediction, LSTM can predict the patient's future health
trends by learning the time dependency of historical data,
thus providing a scientific basis for disease prevention and
personalized treatment. For example, the LSTM model can
predict the probability of a certain disease in the future based
on the patient's previous examination data, take intervention
measures in advance, and reduce the patient's health risks[6].

Another advantage of the long short-term memory
network is that it can effectively process medical data with a



long span. In traditional medical research, patients' health
data often require long-term tracking and observation, and
LSTM is designed to address this problem. Through its
meticulous memory mechanism, it can process data with a
long span. In the application of electronic health records, the
patient's health changes are a long-term accumulation
process, and the occurrence of diseases is often not sudden,
but the result of the gradual accumulation of multiple
potential factors. LSTM can capture these potential
cumulative effects through historical data and provide
important prediction basis for long-term health management.

Combined with other advantages of deep learning,
LSTM can also be trained with large-scale data sets to obtain
higher accuracy and generalization ability. With the increase
in the amount of medical data, traditional machine learning
models may face the risk of overfitting, while deep learning
models, especially LSTM, can learn more abstract and
effective features in large amounts of data through
multi-layer network learning. Compared with rule-based
models or traditional statistical methods, LSTM models can
handle complex nonlinear relationships, helping doctors
better understand and predict patients' health status[7]. By
analyzing a large amount of patient data, LSTM can not only
improve the accuracy of disease prediction for a single
patient, but also extract more universal health trends from
group data, providing data support for public health policies
and large-scale disease prevention.

In general, long short-term memory networks provide a
powerful tool for disease prediction in electronic health
records. LSTM can make full use of the characteristics of
time series data, capture long-term dependencies, and
automatically extract features from massive data through
deep learning methods, greatly improving the accuracy and
adaptability of disease prediction. In the future of medical
and health management, LSTM has broad application
prospects. It can not only be used for early diagnosis of
diseases, but also help realize personalized medicine and
precision treatment, and contribute to the development of
global medical and health.

2. Related Work
Deep learning has significantly improved disease

prediction using electronic health records (EHR) by
capturing long-term dependencies in time-series data.
Traditional machine learning methods, such as support
vector machines (SVM), random forests (RF), and
multi-layer perceptrons (MLP), struggle with the complexity
and sequential nature of medical records. Long short-term
memory (LSTM) networks, with their gating mechanisms,
have been widely adopted to model sequential dependencies
effectively. Recent studies have explored enhanced deep
learning architectures for EHR-based disease prediction.
Gao et al. [8] introduced a multi-channel
hypergraph-enhanced model for sequential visit prediction,
demonstrating the advantages of structured deep learning in
modeling patient trajectories. Similarly, Mei et al. [9]
proposed collaborative hypergraph networks to assess
disease risk, leveraging graph-based neural architectures to
capture complex dependencies. The integration of
retrieval-augmented generation (RAG)-based
recommendation systems for analyzing medical test data
further enhances the interpretability of predictive models
[10].

Medical text processing plays a critical role in
extracting meaningful features from EHR. Named entity
recognition (NER) and deep learning-driven medical text
classification have been extensively studied. Fei et al. [11]
explored privacy-preserving mechanisms in NLP for
medical records, highlighting security concerns in healthcare
data processing. Cang et al. [12] investigated deep learning
approaches for medical text analysis, improving information
retrieval from unstructured clinical notes. Additionally, an
ALBERT-driven ensemble learning method was proposed
for medical text classification, showing enhanced
performance in feature extraction [13]. Hu et al. [14]
introduced specialized NLP models for medical named
entity recognition, achieving high precision in identifying
disease-related terms, while Zheng et al. [15] conducted a
comparative study of advanced pre-trained NER models,
refining structured feature extraction techniques for
healthcare applications. Furthermore, Liang et al. [16]
developed deep learning methods for sensitive information
detection in medical documents, addressing privacy and
security issues in EHR analysis.

Advancements in neural network architectures have
further improved sequential modeling and disease prediction
accuracy. Yan et al. [17] explored the synergistic role of
deep learning and neural architecture search (NAS) in
optimizing AI models, paving the way for more efficient
LSTM-based architectures. Qi et al. [18] focused on
optimizing multi-task learning to enhance large-scale deep
learning performance, an approach that can improve the
generalization ability of LSTM networks in healthcare.
Transformer-based models have also seen optimizations for
sequential data processing; Gao et al. [19] introduced a
multi-level attention mechanism within an optimized
Transformer for text classification, suggesting potential
improvements for processing sequential EHR data.

In addition to textual data analysis, deep learning has
made substantial progress in feature extraction from medical
images, which could complement structured EHR-based
disease prediction. Zheng et al. [20] explored fully
convolutional neural networks (FCNNs) for high-precision
medical image analysis, contributing to advanced feature
extraction techniques. Sui et al. [21] proposed a U-Net-based
channel squeeze structure for lung nodule detection and
segmentation, which demonstrates the efficacy of deep
networks in medical diagnostics. He et al. [22] evaluated the
performance of VGG19 in complex image classification
tasks, providing insights into convolutional architectures
applicable to healthcare data. Additionally, Hu et al. [23]
investigated few-shot learning with adaptive weight masking
in conditional generative adversarial networks (GANs),
presenting potential solutions for handling limited labeled
medical data.

The literature demonstrates that deep learning,
particularly LSTM-based models, has significantly improved
disease prediction using EHR. Prior research has contributed
to sequential modeling, NLP-based medical text analysis,
neural architecture optimization, and feature extraction
methodologies. Our study builds on these advancements by
further optimizing LSTM networks to enhance disease risk
assessment, aiming to improve clinical decision support
systems through deep learning innovations.



3. Method
In this study, we used a long short-term memory

network (LSTM) to predict diseases in electronic health
records. LSTM is a special recurrent neural network (RNN)
whose structural design enables it to effectively capture
long-term dependencies in time series data. Compared with
traditional RNN, LSTM can solve the gradient vanishing
and gradient exploding problems faced by traditional RNN
in long sequence data by introducing forget gates, input
gates, and output gates. The core idea of the model is to
store important information through memory cells (cell
states), and to decide which information to keep and which
information to discard through a gating mechanism, thereby
effectively capturing the temporal characteristics in the data.
Its network architecture is shown in Figure 1.

Figure 1. Network architecture diagram
The basic structure of LSTM includes three main gating

mechanisms: input gate, forget gate and output gate. At each
time step, the input gate determines how much of the current
input information is passed to the cell state; the forget gate
determines how much of the memory of the previous
moment is forgotten; and the output gate determines how
much information in the current cell state is output for
calculation in the next time step. Specifically, the calculation
process of LSTM can be expressed by the following
formulas:

)],[( 1 ittit bxhWi  

Among them, 1th is the hidden state of the previous

time step, tx is the input of the current time step, iW and

ib are the weight and bias of the input gate respectively,
and  is the Sigmoid activation function.

Next, the forget gate (f) controls how much of the
memory from the previous moment is forgotten:

)],[( 1 fttft bxhWf  
Among them, fW and fb are the weight and bias of

the forget gate respectively, and  is also the Sigmoid
function.

Then, update the cell state (c):
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Among them, tc' is the candidate memory unit, tc

is the cell state at the current time step, and tanh is the
hyperbolic tangent activation function.

In practical applications, LSTM can effectively capture
long-term dependencies in time series data through this
gating mechanism. For the electronic health record dataset,
we regard various medical information of patients (such as
diagnosis records, medication records, laboratory test results,
etc.) as input features and train and predict them through the
LSTM model. In the data processing process, the original
data is first preprocessed, including normalization, missing
value filling, and time series partitioning. In order to
improve the generalization ability of the model, we use the
dropout technology to prevent overfitting.

During the model training process, we use the Adam
optimization algorithm to optimize the parameters of LSTM.
The Adam algorithm combines the momentum method and
adaptive learning rate to make the training process more
stable and converge faster. The goal of optimization is to
minimize the loss function so that the model can achieve
better prediction results on electronic health record data.

4. Experiment
4.1. Datasets

In this study, the electronic health record dataset used
comes from the public MIMIC-III (Medical Information
Mart for Intensive Care) database. MIMIC-III is a large
clinical database provided by Bethesda Hospital in Boston,
USA, which contains detailed medical records of more than
40,000 patients in the intensive care unit (ICU). The dataset
includes various types of medical information, such as
patient demographic characteristics, laboratory test results,
drug use records, diagnostic codes, and treatment records in
the ICU. All patient information is anonymized to ensure
data privacy and security, suitable for various clinical
studies and machine learning modeling.

The data in the MIMIC-III database is organized in
chronological order, providing detailed time series
information for each patient. This makes it particularly
suitable for training models such as long short-term memory
networks (LSTM) for disease prediction and health trend
analysis. For example, the database contains physiological
data, laboratory test results, drug treatment records, etc. of
patients during hospitalization, which can help the model
capture the dynamic changes of patients' conditions and thus
more accurately predict the occurrence of diseases. The
dataset also contains the final results such as the mortality
rate and metastasis of the patients, which provides label
information for the disease prediction model and can help
the model learn the correct prediction target during the
training process.

In order to predict the disease, this study extracted
disease-related time series data from the MIMIC-III
database, including the basic information of the patients,
clinical examination results, and treatment records. In the
data preprocessing stage, the original data was first cleaned,
missing values ​ ​ were filled, and normalized to ensure
that the data can adapt to the training of the LSTM model.
We selected some common diseases, such as heart disease
and diabetes, as research objects, and annotated the dataset
with the diagnostic codes of these diseases. Finally, the



dataset was divided into a training set and a test set to ensure
the model's effective evaluation and generalization ability.

4.2. Experimental Results
In order to verify the effectiveness of the LSTM model

in the task of disease prediction in electronic health records,
this study conducted comparative experiments with several
other commonly used machine learning models. Specifically,
we selected support vector machine (SVM), random forest
(RF) and multi-layer perceptron (MLP) as comparison
models. Support vector machine is a powerful classifier that
can improve prediction accuracy by maximizing
classification intervals, but its computational complexity is
high when processing large-scale data. Random forest makes
predictions by constructing multiple decision trees, has
strong generalization ability and robustness, and is suitable
for processing complex nonlinear relationships. Multi-layer
perceptron is a basic deep learning model that is trained
using a fully connected network structure. Although it can
capture complex patterns in the data to a certain extent, it is
not as good as LSTM in modeling time series data. By
comparing with these models, we can fully evaluate the
advantages and actual effects of LSTM in disease prediction
tasks. The experimental results are shown in Table 1.

Table 1. Experimental Results
Model MSE RMSE MAE
SVM 0.0423 0.2057 0.1685
RF 0.0382 0.1954 0.1542

BILSTM 0.0359 0.1895 0.1468
LSTM 0.0267 0.1635 0.1320

Judging from the experimental results, the LSTM
model has shown obvious advantages in the disease
prediction task of electronic health records. Compared with
other models, especially in mean square error (MSE), root
mean square error (RMSE) and mean absolute In terms of
evaluation indicators such as error (MAE), LSTM has
significantly better performance than support vector machine
(SVM), random forest (RF) and bidirectional LSTM
(BiLSTM). Specifically, the MSE of LSTM is 0.0267,
RMSE is 0.1635, and MAE is 0.1320. In contrast, the MSE
and RMSE of SVM, RF, and BiLSTM are higher than
LSTM, indicating that LSTM has more advantages in
accuracy and model stability.

Although support vector machine (SVM) is a powerful
classification model that performs well in many machine
learning tasks, it shows certain limitations when processing
electronic health records, which are high-dimensional data
that contain time series characteristics. sex. Judging from the
experimental results, the MSE of SVM is 0.0423, the RMSE
is 0.2057, and the MAE is 0.1685. These values ​ ​ are
much higher than LSTM, indicating that SVM fails to fully
capture the long-term dependencies in the data when
processing time series data. Although SVM may perform
well with less static data and features, its performance is not
as good as LSTM when faced with complex and dynamic
electronic health record data.

As an integrated learning method, Random Forest (RF)
uses the voting results of multiple decision trees for
classification and regression. It can effectively reduce
over-fitting problems and has strong adaptability to
high-dimensional data. However, although random forests

perform stably in many machine learning tasks, they fail to
demonstrate the powerful advantages of LSTM when
dealing with data such as electronic health records that
contain time series and long-term dependencies. Random
forest has an MSE of 0.0382, RMSE of 0.1954, and MAE of
0.1542, which although better than SVM, is still lower than
LSTM. This indicates that while random forests can capture
certain data patterns, they are not specifically optimized for
time series data. As a result, they are relatively ineffective at
modeling time-dependent features and fail to fully leverage
the temporal information inherent in electronic health
records.

Bidirectional long short-term memory network
(BiLSTM) is an extension of standard LSTM that improves
the performance of the model by considering both forward
and backward time dependencies. Bidirectional LSTM can
capture more contextual information in some tasks, but in
this study, the performance of BiLSTM is still inferior to
unidirectional LSTM. Its MSE is 0.0359, RMSE is 0.1895,
and MAE is 0.1468. Although it is better than SVM and RF
on these indicators, it still fails to surpass the one-way
LSTM. Bidirectional LSTM often increases model
complexity, which may lead to increased computational
overhead and the risk of overfitting, especially when
processing large-scale electronic health record data. In
addition, although BiLSTM can consider both forward and
backward dependencies, for certain disease prediction tasks,
one-way LSTM is more stable and efficient due to its
simpler structure and lower computational cost.

The significant advantage of LSTM is its ability to
effectively capture dependencies over long time spans, and
is particularly suitable for processing time series data typical
of electronic health records. Electronic health records
usually involve medical data at multiple time points,
including diagnosis, treatment, medication use,
physiological indicators, etc., and the relationship between
these data often has long-term dependencies. Through its
unique memory unit (cell state) and gating mechanism,
LSTM can remember important information over a long
period of time and filter out unnecessary interference.
Therefore, LSTM can better capture the changing trend of
patients' health status in this task, thereby providing more
accurate results in disease prediction. In addition, LSTM has
strong adaptive ability and can continuously optimize
network parameters through the back-propagation algorithm,
avoiding manual feature selection and over-fitting problems
that may occur in traditional machine learning models.

Overall, the performance of LSTM in this experiment
highlights its advantages in time series data modeling.
Especially in data tasks such as electronic health records that
contain multiple time series features, LSTM can effectively
utilize its powerful time-dependent modeling capabilities to
accurately predict the occurrence of diseases. This provides
a valuable reference for future deep learning applications in
the medical field, especially in disease prevention,
personalized treatment and health management. LSTM has a
very broad application prospect. Compared with traditional
machine learning models, LSTM has demonstrated a
stronger ability to process time series data and is expected to
play a greater role in large-scale medical data analysis and
clinical decision support in the future.



5. Conclusion
This study verified the superiority of long short-term

memory network (LSTM) in the task of disease prediction in
electronic health records through comparative experiments.
The experimental results show that LSTM can effectively
capture long-term dependencies when processing electronic
health data containing time series features, and provides
more accurate prediction results than support vector machine
(SVM), random forest (RF) and bidirectional LSTM
(BiLSTM). The lower mean square error (MSE), root mean
square error (RMSE) and mean absolute error (MAE) of
LSTM prove its accuracy and stability in disease prediction
tasks. In the future, LSTM-based models are expected to
play a greater role in the medical field, helping to identify
disease risks early and support the formulation of
personalized treatment plans, providing strong data support
for clinical decision-making.
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