
Journal of Computer Technology and Software

ISSN:2998-2383

Vol. 4, No. 1, 2025

Development of a Virtual Simulation System for Industrial Robot

Kinematics Based on Unity 3D
Elias Sorensen

University of Alberta, Edmonton, Canada

EliasSorensen@ualberta.ca

Abstract: With the rapid expansion of industrial robotics driven by the "Made in China 2025" initiative, there is an urgent

demand for innovative and cost-effective training methods to address the significant talent gap in related industries. This study

presents the design and implementation of a virtual simulation system for industrial robot motion, using the ABB IRB 120

robot and the Unity 3D engine. The proposed system replicates real robot kinematics with high accuracy while offering

cost-effective and reusable training solutions. Experimental tests demonstrate that the platform supports both forward and

inverse kinematics with efficient and user-friendly operation. The system is valuable for enhancing human-robot interaction

and operator training across industrial settings.

Keywords: Virtual Simulation; Industrial Robots; Unity3D; Kinematics.

1. Introduction
To cope with the needs of the new round of technological

revolution and industrial transformation worldwide, and to
accelerate the transition from a manufacturing country to a
manufacturing powerhouse, China has proposed the "Made
in China 2025" strategy, which has led to the increasingly
wide application of industrial robots in various fields.
According to statistics from the International Federation of
Robotics (IFR), China has ranked first in the world in terms
of the stock of industrial robots for eight consecutive years
since 2013[1]. In 2021, the annual installation of industrial
robots in China increased by 51% year-on-year, resulting in
a talent gap of up to 5 million in related industries[2,3], and
enterprises need to pay high training costs for employee skill
development. With the rapid development of internet
technology and computer capabilities, robot virtual
simulation technology can effectively overcome the
limitations of equipment and venue in talent training[4], and
can meet the industry's demand for cultivating more relevant
talents, avoiding the lack of practical operation opportunities
for operators due to the high cost of equipment and venue
restrictions in training. In this paper, based on the Unity 3D
engine and using the ABB IRB 120 industrial robot as the
object of study, we research virtual simulation and motion
control of industrial robots, and design a robot kinematics
simulation system that maintains high consistency with the
motion of real robots, and has the advantages of low cost
and reusability.

2. System Functional Structure Design
To achieve efficient operation of industrial robots and

visualized monitoring of their motion status, the Unity 3D
engine is adopted for the development of the robot system.
The development of the virtual simulation system consists of
two main parts. The first part is the scene area, which
includes the construction of the entire scene, including: 1)
System scene building: industrial robot model construction,
lighting effects, shadow effects, scene baking. 2) UI
interface design: start menu and buttons for different
functional modules. 3) Camera control: implementation of
scene roaming, allowing users to observe the robot's status
from different angles. The second part is the functional area,
which includes the following two contents: 1) Forward and
inverse kinematics calculation: to achieve a better
reproduction of the real robot's motion posture in the virtual
simulation. 2) Motion control: the virtual system allows
operators to control the robot through computer input
devices. The implementation of system functions is mainly
through the development of functional modules using C#
language. The functional structure of the system is shown in
Figure 1.

Figure 1. Functional Module Illustration of
Virtual System



3. 3D Model Creation
3.1 Creation of 3D Model for the Robot
The creation of a 3D model for an industrial robot is the

foundation for realizing the virtual simulation system. On
one hand, in order to enhance the realism of the virtual
industrial robot model and accurately represent the pose
information of the real robot, the industrial robot needs to be
accurately modeled in a 1:1 scale, including texture
processing and lighting rendering. On the other hand, in
order to lightweight the virtual industrial robot model, it is
not necessary to model the internal parts of each axis, only
the external surfaces of each joint need to be processed. To
meet these requirements, this paper first uses SolidWorks to
create models of the six joints of the robot with accurate
dimensions, based on measurements of the dimensions of
the real robot, and models the six axes according to real
dimensions. Then, the assembly function of SolidWorks is
used to assemble the six joints of the robot to obtain a
complete industrial robot model. Since the virtual model
format created by SolidWorks cannot be read by Unity, it is
necessary to use 3Ds Max software for format conversion
and lightweight processing. In 3Ds Max, the model is
optimized by deleting redundant faces to reduce the CPU
burden and achieve the goal of lightweighting the model[5].
The pivot positions of each joint are adjusted for control in
Unity[6]. As the Y-axis in the world coordinate system of
Unity engine is upward direction in a left-handed coordinate
system, while the world coordinate system of 3Ds Max
software is Z-axis upward, it is necessary to convert the
Z-axis and Y-axis during the export from 3Ds Max to .FBX
format[7,8]. The model exported in .FBX format has good
compatibility with Unity engine and does not result in loss
of part details. Material rendering and environmental
lighting settings for the robot model are performed in Unity.
The specific process of industrial robot modeling is shown
in Figure 2.

Figure 2. Robot Modeling Workflow Diagram

3.2 Basic Principles of Motion Simulation
In the motion process of a real robot, there is a

parent-child relationship between the six axes of the robot.
The rotation of each joint axis is relative to the parent object.
Therefore, in order to achieve the effect of the virtual robot
end-effector following the rotation of the joints, Unity's
parent-child relationship is utilized, as shown in Figure 3.
The hierarchy in Unity includes parent nodes and child
nodes, and child nodes can also contain other child
nodes[9] .The characteristics of the parent-child relationship
are that when the parent object moves or rotates, the child
objects will move or rotate accordingly, but when the child
objects move or rotate, it will not affect the position and
state of the parent object. By correctly setting the hierarchy
relationship between the axes, a model tree of the robot is
established. Through scripting to control the rotation
direction and speed of each axis, various robot motions can
be initially presented.

Figure 3. The hierarchical relationship between joints

4. Robot Kinematics Analysis
4.1 Robot Kinematic Modeling
The ABB IRB 120 robot is a serial-link type industrial robot

with six rotational joints. The motion of the robot is achieved
by rotating each joint to different angles to transform the
position and orientation of the end effector. In order to
describe the relationship between the joint variables of the
robot and the pose of the end effector, the Denavit-Hartenberg
(DH) method is used to establish the kinematic model of the
robot. In the process of DH parameterized modeling, the
establishment of coordinate systems can be done using either
the standard DH method or the modified DH method. The
main difference between these two methods lies in the
definition of the coordinate systems for the links: the
coordinate systems of the standard DH method are defined at
the back end of the links, i.e., the end farthest from the base.
On the other hand, the coordinate systems of the modified DH
method are defined at the front end of the links, i.e., the joint
closer to the base. In this paper, the standard DH method is
adopted to establish the coordinate systems of the robot links,
as shown in Figure 4. Fixed reference coordinate systems are
established at the joint locations of the links, and the pose
relationship between adjacent links is described using 4x4
homogeneous transformation matrices, which are then used to
derive the pose relationship of the end effector relative to the
fixed reference coordinate system [10].

Figure 4. ABB IRB 120 robot link coordinate systems

In the figure, d1 =290mm, a2 =270mm, a3 =70mm, d4
=302mm, d6 =72mm. The meanings of various parameters
in the D-H (Denavit-Hartenberg) method are as follows:
i :The angle of rotation from axis Xi1 to axis

Xi , with positive rotation defined as rotating in the positive
direction about axis Zi1 .

di :The distance between axis Xi1 and axis
Xi along the direction of axis Zi 1 , with positive
distance defined as moving in the direction of axis Zi1 .



i :The angle of rotation from axis Zi1 to axis Zi ,
with positive rotation defined as rotating in the positive
direction of axis Xi .

ai :The distance between axis Zi 1 to axis
Zi , with positive value defined as pointing in the
direction of axis Xi .

The parameters of the robot in the home position are
shown in Table 1.

Table 1. Link parameter of IRB 120

Conn
ecting
rod
i

i (˚) di (mm) i (˚) ai (mm)

1 0 290 -90 0

2 -90 0 0 270

3 0 0 -90 70

4 0 302 90 0

5 0 0 -90 0

6 0 72 0 0

4.2 Inverse Kinematic of Robot
Inverse kinematics of a robot refers to the calculation of a

series of joint angle variables that satisfy the desired
requirements, given the pose of the end-effector of the robot.
It has wider applications in practical production compared to
forward kinematics. The solution of inverse kinematics is
usually the solution of a nonlinear system of equations[11],
making it complex and non-unique. Due to the different
mechanical structures of robots from different manufacturers,
and the different coordinate systems established for linkages,
there are multiple methods for solving inverse kinematics[12].
In motion simulation systems with high real-time
requirements, the cyclic coordinate descent (CCD) method,
which has lower computational complexity and faster
computation speed, is more suitable for solving the inverse
kinematics problem[13]. CCD is an iterative method that
starts from the position of the end-effector of the robot, and
adjusts the angle of each joint one by one. For each joint, the
error of the end-effector's orientation in that joint direction is
calculated after each iteration, and then refined until the error
in the end-effector's orientation in that joint direction is less
than a preset threshold or reaches the maximum iteration
times, in order to minimize the difference between the
end-effector's orientation and the desired orientation.

As shown in Figure 5, the iterative process of cyclic
coordinate descent (CCD) method is explained with an
example of two joints and one end-effector. Where Pe
is the current position of the end-effector, Pf is the
position of the target point, J1 and J2 are the first and
second joint angles, respectively. Vie is the vector from
the i joint to the end-effector, and Vi f is the vector
from the i joint to the target point. As shown in Figure 5(a),

first, calculate the angle 1 between the line connecting the
joint and the target point and the line connecting the joint
and the end-effector, and rotate the joint J1 to the position
shown in Figure 5(b) to bring the joint end closer to the target
point.

Then calculate the angle 2 between the line
connecting joint J2 and the end-effector and the line
connecting joint J2 and the target point, and rotate joint
J2 to the position shown in Figure 5(c).

Repeat this process multiple times, as shown in Figure
5(d), the distance between the robot's end- effector and the
target point will reach its minimum value[14].

Figure 5. The iterative process of cyclic coordinate descent
(CCD) method

5. Robot Motion Simulation
Experiment

The design of the user interface (UI) is a crucial step in the
development of a robot motion simulation system. The UI
serves as a medium for interaction between users and the
system, and a well-designed UI can make the interaction
between operators and robots simpler and more natural. In the
robot kinematic control UI of this system, as shown in Figure
6, a button-based approach is used to simplify the control of
robot motion and improve interaction efficiency. The buttons
on the control panel are correspondingly mapped to each axis
of the robot. The "+" and "-" buttons are used to control the
forward and backward motion of the robot joints, respectively.
For example, when the user presses the "-" button of Joint1,
the first axis of the robot will move in a clockwise direction.



Figure 6. Forward kinematics control UI interface

The system uses a clickable and draggable sphere as the
target point, and places the target point at the TCP (Tool
Center Point) of the end effector, combined with the inverse
kinematics (IK) calculation using the cyclic coordinate
descent (CCD) algorithm to achieve the robot's inverse
kinematics during the operation, as shown in Figure 7. The IK
target point for the robot is represented by a blue sphere, and
the operator can drag the target point to any position within
the workspace. On the UI interface's inverse kinematics
display panel, the operator can see the rotation angles of
each axis during the IK calculation using the CCD algorithm,
which helps the operator better understand the current
posture of the robot in space, enhances operability, and
provides a better interactive experience. Through
experimental testing, the system has been proven to simulate
the kinematics of the robot with high consistency to the
actual robot's motion.

Figure 7. IK target point

6. Conclusion
The virtual simulation system for industrial human-robot

interaction has broad application scenarios. After
experimental testing, this platform can achieve simulation of
both forward and inverse kinematics of robot motion, with
simple operation and high efficiency, which can enhance the
sense of presence in the interaction between operators and
robots. It has practical application value in the training of
industrial robot operators.

References
[1] International Federation of Robotics, "World Robotics Report

2022: Industrial Robots," IFR, 2022.

[2] Boston Consulting Group, "Global Adoption and Regional
Trends of Industrial Robots," BCG Report, 2023.

[3] European Robotics Forum, "Strategic Development of the
Industrial Robotics Sector: Global Outlook," ERF Annual
Report, 2024.

[4] Siemens Digital Industries Software, "Transforming
Manufacturing with Robotics Simulation," Siemens Technical
Papers, 2023.

[5] M. Q. Tram, J. M. Cloud, and W. J. Beksi, "Integrating
Virtual Reality for Human-Robot Collaboration," arXiv
preprint arXiv:2305.15657, 2023.

[6] F. P. Audonnet, A. Hamilton, and G. Aragon-Camarasa,
"Comparing Simulation Software for Industrial Robotics,"
arXiv preprint arXiv:2204.06433, 2022.

[7] E. Yoshida, "Human-Machine Interaction in Robot
Simulations," Advanced Robotics, 2019.

[8] RoboDK Inc., "RoboDK: Advanced Simulation and Offline
Programming for Robotics," RoboDK Documentation, 2025.

[9] NVIDIA Corporation, "NVIDIA Isaac Sim on Omniverse:
Revolutionizing Industrial Simulations," NVIDIA Developer
Blog, 2021.

[10] A. Goswami and P. Vadakkepat, "Kinematic Control and
Motion Planning for Robotics," Springer Handbook of
Robotics, 2016.

[11] P. Corke, "Robotics, Vision and Control: Fundamental
Algorithms," Springer Robotics Series, 2021.

[12] B. Siciliano and O. Khatib, "Kinematics, Dynamics, and
Motion Planning in Robotic Manipulators," Handbook of
Robotics, 2016.

[13] B. Kenwright, "Inverse Kinematics — Cyclic Coordinate
Descent (CCD)," Journal of Graphics Tools, vol. 16, no. 4, pp.
37-41, 2012.

[14] T. Tr ầ n, T. Tr ọ ng, and D. et al., "The CCD-Algebraic
Algorithm to Solve the Inverse Kinematics of 6-DOF
Redundant Manipulators," Journal of Computer Science,
2022.


	1.Introduction
	2.System Functional Structure Design
	3.3D Model Creation
	4.Robot Kinematics Analysis
	5.Robot Motion Simulation Experiment
	6.Conclusion
	References

