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Abstract: The pursuit of Artificial General Intelligence (AGI) necessitates models capable of rapid adaptation to novel tasks
with minimal data, akin to human learning. This paper introduces TSMB (TWO-STAGE MANIFOLD-BASED FEW-SHOT
LEARNING), a novel approach to Few-Shot Learning (FSL) that leverages unsupervised learning to harness the geometric
distribution of data across tasks. TSMB refines feature representations through a two-stage process: first, by leveraging the
topological structure of high-dimensional data to fine-tune general features, and second, by generating virtual samples to integrate
semi-supervised learning. This method aims to address the challenges of data scarcity and overfitting, common in FSL. The model
comprises a backbone network for feature extraction, a manifold learning module to capture topological results, a manifold
support point section to assist learning, and a denoising prototype classifier for decision-making. TSMB demonstrates enhanced
generality and performance, offering a promising direction for advancing FSL towards more ethical, sustainable, and effective AI
applications.
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1. Introduction
In the era of boundless Artificial Intelligence (AI), we

are facing a fundamental shift from data-driven to
intelligence-driven model learning. In this transition, Few-
Shot Learning (FSL) plays a crucial role. Traditional machine
learning methods rely on large amounts of labeled data to
train models, which limits the widespread application of AI
technologies.

The core value of few-shot learning lies in its simulation
of human learning mechanisms—how to enable machines to
learn and adapt to new environments rapidly with minimal
information, just like humans. This ability is essential for
achieving true Artificial General Intelligence (AGI), as it
allows machines to work effectively in a changing world
rather than being limited to specific tasks or domains.

Moreover, few-shot learning plays a key role in driving
AI technology towards a more ethical and sustainable
direction. By reducing the demand for large-scale datasets,
few-shot learning helps lower the energy consumption,
environmental impact, and costs of AI systems, while also
mitigating potential privacy and ethical issues that may arise
during data collection processes. In a world increasingly
focused on sustainability and ethical responsibility, this
approach provides a more responsible and sustainable path for
the future development of AI.

Image classification tasks are among the earliest
explored areas in few-shot learning, accumulating the most
advanced techniques in this field to date. Simultaneously,
classification problems are one of the most fundamental issues.
Its successful resolution would also drive developments in

other areas of this field. Metric-based few-shot learning
models [1], due to their ability to adapt quickly to few-shot
tasks, have consistently been the mainstream direction in few-
shot learning.

A large body of work has been developed around metric-
based models [2], focusing on improving models from the
perspectives of more precise class representations and more
appropriate metric rules. Optimization-based models [3],
capable of fine-tuning data representations using few-shot
data, received attention in the early stages but faced certain
limitations in research and application due to difficulties in
parameter tuning and high computational complexity. From
the early exploration of metric-based and optimization-based
model approaches to the later introduction of memory
modules, meta-learning training [4], attention mechanisms,
and transfer learning [5] into models, we have now reached a
new stage: how to form task-specific embeddings in situations
of data scarcity and high risk of overfitting.

This paper proposes that unsupervised learning should be
introduced to fully utilize the geometric distribution or
topological structure of data from different few-shot tasks in
high-dimensional feature spaces, fine-tuning general feature
representations at the task level. Then, by generating virtual
samples from support set data to inject supervised information,
a semi-supervised learning form is created. Starting from the
perspective of representation, this paper attempts to learn
specific representations suitable for different few-shot tasks to
improve model performance, demonstrating strong generality.

2. Related Work



Few-shot learning (FSL) has emerged as a critical area of
research aimed at enabling machine learning models to
generalize effectively with minimal labeled data. Traditional
approaches in FSL are primarily categorized into metric-based
and optimization-based methods. Metric-based models, such
as Prototypical Networks and Matching Networks, focus on
constructing embedding spaces that minimize intra-class
variance while maximizing inter-class separability, allowing
for more effective classification in few-shot scenarios
[6][7][8]. Optimization-based models, while demonstrating
strong adaptability to new tasks, often face computational
challenges and require careful parameter tuning [9][10].
Hybrid techniques integrating metric-based and optimization
approaches have shown significant improvements in
overcoming data scarcity and boosting generalization
performance [11][12].
Manifold learning has played a growing role in enhancing
few-shot learning by modeling the geometric structure of
high-dimensional data distributions. The integration of
convolutional neural networks (CNNs) with transformer
architectures has demonstrated effectiveness in capturing
these complex data geometries, thereby improving the
adaptability of classifiers to novel tasks [13]. Recent
advancements show that leveraging CNN-transformer
synergies not only enhances feature representation but also
strengthens model performance in predictive modeling across
diverse applications [14].
Generative models such as Generative Adversarial Networks
(GANs) and variational autoencoders (VAEs) have become
essential tools in augmenting datasets and addressing
overfitting in few-shot learning tasks. The use of conditional
GANs with adaptive weight masking has proven particularly
effective in generating realistic virtual samples to enrich the
support set, contributing to improved model accuracy and
robustness [15]. Generative approaches have also been
applied in financial market supervision and medical image
analysis to counter data imbalance, demonstrating their
versatility across domains [16][17][18]. Furthermore,
adversarial learning techniques have been increasingly
adopted to enhance model resilience against adversarial
attacks, safeguarding the integrity of few-shot classifiers [19].
Semi-supervised learning and transfer learning techniques
have also gained traction in addressing the limitations of
labeled data in few-shot scenarios. Reinforcement learning-
based adaptive user interface generation and meta-learning
strategies have been employed to optimize models for
personalized applications [20][21]. Transfer learning, coupled
with LoRA (Low-Rank Adaptation) fine-tuning, enhances
computational efficiency and reduces the resource demands of
large-scale models, providing effective solutions for scaling
few-shot learning systems [22][23].
Graph neural networks (GNNs) have been widely applied in
recommendation systems and stock prediction tasks,
underscoring the importance of structured data representations
in few-shot learning [24][25]. The hierarchical nature of
GNNs facilitates the modeling of complex relationships,
further enhancing classification performance in low-data

regimes. Dynamic scheduling and Q-learning algorithms have
also been leveraged to improve resource optimization and data
management, reinforcing the adaptability of machine learning
systems across different environments [26][27].
In addition, deep learning frameworks such as VGG19 and
fully convolutional networks (FCNs) continue to serve as
foundational models for image classification tasks,
contributing to the advancement of few-shot learning by
providing robust benchmarks [28][29]. Calibration learning
techniques, which align model predictions with true data
distributions, offer additional mechanisms for mitigating
overfitting and improving model generalization under data-
limited conditions [30].
Overall, the landscape of few-shot learning continues to
evolve through the convergence of manifold learning, semi-
supervised techniques, and generative modeling. These
advancements contribute to the development of more
adaptable and generalizable AI systems capable of addressing
the inherent challenges associated with data-scarce
environments.

3. Background
3.1 Problem Definition

The conventional N-way K-shot framework proves
overly rigid, failing to capture real-world complexities. To
address this, we propose a more flexible N-way K-shot task
setup that allows for varying amounts of labeled data across
categories in the support set. We argue that the configuration
of a few-shot learning task's support set is primarily
determined by two factors: mean and variance. The mean
influences the overall scale of the support set, while the
variance reflects the degree of imbalance between classes.

By sampling category sizes from specific statistical
distributions, we can precisely control these key parameters.
This approach not only accommodates the traditional
balanced N-way K-shot setup (viewed as a special case with
zero inter-class variance) but also simulates more realistic
imbalanced scenarios.

This more challenging framework better mimics real-
world conditions and offers a fresh perspective for assessing
potential weaknesses in existing few-shot learning models.
Additionally, it provides a more comprehensive testing
environment for developing and validating novel solutions,
thereby fostering further advancements in the field.

4. Method
This chapter first presents the problem definition of few-

shot tasks and the task settings for both balanced and
imbalanced scenarios in few-shot learning, which are used to
evaluate the strengths and weaknesses of models. It then
introduces a few-shot learning model, detailing each of its
components, such as the feature extractor, manifold learning,
manifold support points, and the denoised prototype classifier.
The chapter thoroughly describes the training process,
formation, and function of each component.



In the following sections of this chapter, each part of the
model will be introduced in detail. These parts include the
backbone network responsible for feature extraction, the
manifold learning module responsible for capturing the
topological results of few-shot tasks and fine-tuning the
universal feature space, the manifold support points section
that assists in manifold learning, and the denoised prototype
classifier responsible for making classification decisions.

4.1 Feature Extractor

Figure 2. ResNet-12 network architecture

This paper uses feature extractors, specifically backbone
network architectures ResNet-12 and WRN-28-10, which are
based on early deep learning convolutional neural network
architectures but have undergone certain improvements. The
block unit includes a convolutional part for feature extraction,
a normalization part to accelerate network training, and an
activation function part to introduce non-linear
transformations. Multiple basic block units are connected in a
residual form to constitute the main part of the ResNet
network. The architecture of ResNet is shown in Figure 2.

The classifier relies on the feature vector output by ResNet-12
to make classification decisions.

The WRN series network architecture is a further
improvement based on ResNet. WRN improves performance
by increasing the width of the network rather than the depth.
The starting point of this design strategy is to improve model
accuracy without excessively increasing network complexity
and computational cost. WRN has demonstrated superior
performance to the original ResNet in many tasks.

Figure 3. Simplified WRN network architecture

4.2 Full Classification Pre-training
This stage uses conventional end-to-end training to train

the convolutional network, with cross-entropy as the loss
function. Suppose (��,��) ∈ �base , and the total number of
categories in �base is C. The loss function is shown in
formula (1):

� =− 1

� �=1
�  � �=1

�  � ��,� log �
�
�,� (1)

For sample i, assuming the output of the network's last
layer (also called the classification layer or fully connected

Figure 1. Two-Stage Few-Shot Learning Model (TSMB)



layer) is �� , the weight matrix of this layer is W, and the
second-to-last layer is represented by �� , its output can be
called a feature vector or embedding. Then the output of the
classification layer can be represented as shown in formula (2):

�� =��� �� + � (2)

Then, �� �,� can be obtained by formula (3):

�� �,� =
����

�=1
�  � �

���
(3)

Full classification training enables the backbone network
to acquire powerful general feature extraction capabilities.

The high-dimensional feature space formed by the
backbone network can help capture diverse information in
images. However, the number of classification categories in
few-shot tasks is far smaller than in pre-training tasks, and
their categories are unrelated. Therefore, the high-dimensional
feature space often contains dimensions irrelevant to the
current few-shot task. In some cases, irrelevant feature
dimensions can become noise, affecting the model's
performance. The categories that need to be distinguished
between few-shot tasks are also different. Therefore, it is
necessary to form task-specific representations adapted to the
current task's own situation. The conventional approach is to
use fully connected layers to fit the labeled data of new tasks
through backpropagation, thereby adapting the model to new
tasks and making appropriate classification decisions.

However, few-shot tasks have limited data, and neural
networks have strong fitting capabilities, which can easily
lead to overfitting. This causes the model to treat noise
features as essential features for classification decisions,
losing generalization ability.

Therefore, in the model proposed in this paper, manifold
learning is introduced. It uses an unsupervised approach to
leverage the topological structure of the current task itself to
make task-level corrections to the general representation,
forming specific embeddings to eliminate some of the
negative effects brought by full classification pre-training.

4.3 Meta-Learning Pre-training Phase
During the pre-training stage, meta-learning is

introduced to improve the model's ability to quickly adapt to
few-shot tasks. This paper extracts few-shot tasks from the
�base dataset using the standard N- way K- shot Q- query
setup. In the meta-learning stage, the classification layer of
the aforementioned convolutional network is removed,
leaving the remaining part of the network, which is called the
feature extractor or backbone network. The backbone network
plus the prototype classifier constitute a new network, namely
the few-shot learning model. The few-shot learning model
uses the test set data of each task, with a data volume of Q *
N , to perform end-to-end training on the entire network again,
making the model reach a parameter position adapted to few-
shot tasks. The loss function calculation is based on
prototypes. The prototype calculation is shown in formula (4):

�� =
1

��,�
��∈��

 � �� �� (4)

The calculation formula for the loss function is shown in (5):
� =− 1

�∗� �=1
�∗�  � �=1

�  � ��,� log �
�
�,� (5)

The calculation of �� �,� depends on the prototype and metric
rule, as shown in formula (6):

�� �,� =
exp �⋅� �� �� ,��

�=1
�  � exp �⋅� �� �� ,��

(6)

Meta-learning further trains the parameters of the
backbone network, making it better adapted to few-shot tasks.
In this stage, the determination of scaling parameters also
helps the backbone network and metric rules to fit better.

4.4 Denoising Prototype Classifier
In this stage, the learned manifold is utilized to transform

the representation of few-shot data in high-dimensional
feature space, and the denoised feature vectors (projected
feature vectors on the manifold) are used for prototype-based
classification. We use the denoised support set data along with
the formed virtual data manifold support points to create more
reliable denoised prototypes for each category, thus
supporting classification decisions, as defined in equation (7):

�� =
1

�� +1 ��∈��∪ ��
 � �� (7)

The probability that query sample � belongs to
category c is shown in equation (8):

� � = �∣�� =
exp �⋅� ��⋅��

�=1
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(8)

where �(�) is the reciprocal of Euclidean distance or cosine
distance. � is a scaling, adaptive parameter, also known as
the temperature parameter. � is determined during the meta-
learning phase to facilitate mutual adaptation between the
backbone network and the classifier. It can also help maintain
a reasonable similarity between query data and prototypes,
unconstrained by metric rules. When the metric rule is
Euclidean distance, the adaptive parameter can eliminate the
influence of the network's output dimension on the similarity
range; when the metric rule is cosine similarity, the adaptive
parameter can ensure that the similarity between query
problems and prototypes is not limited by the cosine function,
but rather falls within a reasonable interval to form probability
distributions with significant differences.

5. Experiment
5.1 Dataset

The MiniImageNet dataset is a widely used benchmark
dataset in the fields of Few-Shot Learning (FSL) and Meta-
Learning. It is a subset extracted from the larger ILSVRC,
specifically designed to test and validate models' ability to
learn from very limited data. However, compared to



MiniImageNet, it is much larger in scale, containing
approximately 780,000 images. It provides a wider range of
categories and more samples to support complex model
training. Consequently, it is considered an easier dataset.

5.2 Baselines
To comprehensively compare model performance, in

addition to the algorithms introduced in related work, this
study incorporates other models for comparison.

The Baseline++ [31] model, unlike earlier models that
use the weight vector of the last layer as class representatives,
introduces the mean of labeled samples as class
representatives. It enhances model performance by modifying
the loss function and adjusting training strategies.

MTL improves few-shot models by combining meta-
learning and transfer learning.

Relation Networks [32] transform the few-shot learning
problem into a relational learning representation, classifying
by comparing relationships between support set and query set
samples.

LEO [8] generates latent embeddings during the training
phase to support rapid task adaptation.

MetaOptNet [33] combines meta-learning frameworks
with optimization theory, utilizing convex optimization
solvers to quickly adapt to new tasks.

LTP [34] incorporates label smoothing regularization
techniques into the loss function, allowing for task-level fine-
tuning.

The core idea of P-Transfer [35] is that in few-shot
learning tasks, traditional fine-tuning methods may lead to
model overfitting on the target task.

5.3 Experiment Results Analysis
The proposed model was tested on both MiniImageNet

and TieredImageNet datasets. The results are shown in Tables
1 and 2.

Table 1. Performance on MiniImageNet

Model BackBone 1-shot 5-shot

Matching Networks ConvNet-4 42.69 54.20
Prototypical
Networks ConvNet-4 47.73 61.85

Baseline++ ResNet-18 50.83 74.17
TADAM ResNet-12 57.33 75.17
LTP ResNet-12 58.25 73.43
MTL ResNet-12 59.98 73.99

Meta-Baseline ResNet-12 61.91 77.67
P-Transfer ResNet-12 62.93 78.77

Table 2. Performance on TieredImageNet

Model BackBone 1-shot 5-shot

Matching Networks ConvNet-4 50.64 68.89
Prototypical
Networks ConvNet-4 52.24 71.24

Baseline++ ResNet-18 53.39 69.89
TADAM ResNet-12 65.00 79.81
LTP ResNet-12 58.45 73.93
MTL ResNet-12 64.67 79.93

Meta-Baseline ResNet-12 67.25 82.07
P-Transfer ResNet-12 73.04 82.73
TSMB(our) ResNet-12 0.00 0.00

In the 1-shot task setting the proposed model achieved
the best performance on both MiniImageNet and
TieredImageNet datasets. In the 5-shot task setting, the model
still achieved the best performance on the TieredImageNet
dataset, while on the MiniImageNet dataset, it achieved
comparable performance to the best model, P-transfer.
Although the P-transfer model has a slightly higher accuracy
than the proposed model, it has a larger confidence interval.
The proposed model excels at handling high-noise few-shot
tasks. Evidently, 1-shot is a more challenging few-shot task
with greater noise.

To evaluate the model's performance more
comprehensively, this study further compared the proposed
model with Meta-baseline (the best performing model apart
from the proposed one on MiniImageNet and TieredImageNet)
on the more fine-grained CUB dataset. The results are shown
in Table 3.

Table 3. Compared with Meta-baseline

Setting Meta-Baseline TSMB(our)

1-shot 71.85±0.22 79.39±0.24
5-shot 88.51±0.12 89.35±0.13

While maintaining the expected amount of support set
data, the support set was transformed from a balanced state to
an unbalanced state to test the model's performance under
increased support set noise. The Meta-baseline model and the
proposed TSMB model were compared under unbalanced
conditions, with results shown in Table 4.

Table 4. Compared with Meta-baseline

Datasets Meta-Baseline TSMB(our)

MiniImageNet 72.58±0.19 76.68±0.19
TieredImageNet 74.94±0.21 82.42±0.20

CUB 82.84±0.18 87.81±0.16

This sufficiently demonstrates that the proposed model
performs well when support set noise increases.

6. Conclusion
In this chapter, we first compare the model proposed in this
paper with existing high-performing models under the
standard balanced task setting for the support set, using the
benchmark datasets MiniImageNet and TieredImageNet.
TSMB achieves the most outstanding performance.



Subsequently, we introduce the more fine-grained CUB
dataset to comprehensively test the model's performance.
Following this, we conduct further experiments to evaluate
the model's performance under increased support set noise,
specifically in the 5-way Any-shot imbalanced task setting.
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